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Abstract. Light scattering from resonant two-level atoms on three-dimen-
sional lattices can be described by a classical energy conserving t-matrix.
The optical band structure of lattices �lled with such atoms are calculated
exactly in scalar approximation and displays, e.g., the formation of polari-
ton gaps. The Einstein coe�cient for spontaneous emission in a system
with an inhomogeneous dielectric constant is shown to be proportional to
part of the total density of states. This part is calculated for the dipolar
lattice model.

1. Introduction

The �rst steps towards three-dimensional lattices of laser trapped atoms
have been successfully taken with the use of laser cooling techniques [1].
The propagation of light with wavelengths near the optical resonances in
the atoms is dominated by multiple scattering from occupied unit cells and
will lead to the formation of well-de�ned optical band structures when all
cells are �lled.

The band formation for the propagating light is similar to photonic
band structures in periodic three-dimensional dielectrics (`photonic band
gap materials') [2]. The main di�erence is the strong resonant character of
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the scatterers near an optical resonance. Furthermore, in the limit of weak
light �elds and if recoil e�ects are ignored, the propagation of the light is
coherent ([3] p. 414) and without dissipation. Some of these aspects are also
encountered in photonic crystals with dielectric and metallic components
[4], although dissipation is usually present in these systems.

2. Elastic t-matrix for Dipole Scatterers

A proper description of the photonic band structure of the �lled trapped
atom lattice may be based on the t-matrix of an energy conserving, res-
onant dipole oscillator, both in the scalar approximation to the Maxwell
equations and the full vector form [5]. This t-matrix is the exact classi-
cal representation for a dipole transition in a two-level atom and describes
all the multiple elastic scattering events near one center. The t-matrix of
the individual scatterers is, in general, complex and depends explicitly on
frequency ω. It obeys a detailed balance between the energy of the in-
coming wave and all the scattered waves (i.e., ful�lls the optical theorem).
The exact representation of the t-matrix of such dipole scatterers with a
resonance has been developed earlier. The energy dependent t-matrix for
optical point scatterers ful�lling the optical theorem can be derived by us-
ing semi-classical arguments[6] or from a more fundamental approach [5].
In scalar approximation the t-matrix reduces to:

t(ω) =
−4πω2

α−1 − βω2 − iω3
(1)

= −4π

ω
sin(η) exp(iη),

with

tan(η) =
1

β

ω3

ω20 − ω2
, (2)

α the polarizability of the scatterer and β the width of the resonance. In
this form, the t-matrix has a resonance near ω0 =

√
1/αβ. It is di�erent

from the conventional t-matrix of an elastic scatterer in the Schr�odinger
equation [7]. In particular the ω3 energy dependence in the numerator re-
ects the Rayleigh limit for scattering of light at low energies. The t-matrix
of the point scatterer explicitly depends on the energy but not on the wave
vectors of the incoming and outgoing waves.

3. Optical Bandstructure of Dipolar Lattices

With the use of formalisms developed for solid state band calculations (see
e.g., [2, 7]) to exploit the symmetry of the lattice, the photonic band struc-
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ture of the optical atomic lattice can be calculated by diagonalizing the
secular matrix for plane wave Bloch states in the crystal [8]. The coupling
terms between the plane waves are essentially determined by the phase shift
of the t-matrix in (1) and are equal for all the plane waves. In the context
of bandstructure calculations, the standing wave solutions of an in�nitely
extended system are relevant. Such standing wave solutions do not exist for
systems with absorption. Therefore, it is essential the t-matrix ful�lls the
optical theorem [9].

In the following we will limit our calculations to the scalar approxima-
tion. Many of the features discussed for the scalar case, are also relevant
for the full vector approximation[12].

In scalar approximation the secular equation reduces to:

det
∣∣∣[(~k − ~g)2 − ω2

]
δ(~k−~g)(~k−~g ′) + �(ω,~k − ~g,~k − ~g ′)

∣∣∣ = 0, (3)

with

�(ω,~k − ~g,~k − ~g ′) = − 4π

ω

tan(η(ω))

= − 4π

β


ω2

ω20 − ω2
. (4)

Here ~g, ~g ′ are reciprocal lattice vectors, ~k the Bloch wave vectors, and 

the volume of the unit cell.

Since all the o�-diagonal elements in the matrix are equal, the secular
equation may be simpli�ed considerably. In general, given a set of constants
{a1, ..., aN}, the determinant of the matrix of order N with elements Dij =
δijai + �, i = 1, .., N j = 1, .., N is given by:

|Dij | =
{
�

N∑
i=1

[
1

ai

]
+ 1

} {
N∏

i=1
ai

}
. (5)

Choosing ai = (~k − ~gi)
2 − ω2, � given by (4) and with the use of (5), the

secular equation simpli�es to:{
N∑

i=1

1

(~k − ~gi)2 − ω2

}
�(ω) + 1 = 0. (6)

This is essentially the same result as the �rst term in a Green's function
approach to the bandstructure calculation exploiting the isotropic character
of the pointlike scatterer and the exact representation of the phase shift
terms associated with the elastic t-matrix [9].
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Equation (6) can be reproduced by regularizing the full lattice sum
instead of the individual scatterers by introducing a cut-o� gc in the sum-
mation. Splitting the sum over all ~g in a part with |~g| < gc as in (6) and a
part with |~g| > gc enables regularization. In particular for |~g| much larger

than |~k|,

∑
~g

1

(~k − ~gi)2 − ω2
=

∑
|~g|<gc

{
1

(~k − ~gi)2 − ω2

}
+

∑
|~g|>gc

{
1

(~k − ~gi)2 − ω2

}

≈
∑

|~g|<gc

1

(~k − ~gi)2 − ω2
+

∑
~gi

1

~g2i
−

∑
|~g|<gc

1

~g2
. (7)

The sum for
∑

~gi
1/~g2i diverges in 3D and the regularization procedure

replaces the frequency independent sum
∑

i 1/|~gi|2 by β/(4π) > 0. This
establishes the resonant expression of the `optical potential' �(ω) in the
dispersion laws described by Eq.(3) and Eq.(5) (in 1D no regularization is
necessary and we recover the Kronig-Penney model).

We solved the secular Eq.(3) numerically for an fcc lattice of resonant
dipoles with a resonance frequency ω0. Two characteristic cases for ω0 with
respect to the typical frequency of the �rst Brillouin zone (ωBZ) are dis-
cussed here:

1. ω0 < ωBZ (Fig. 1.a)
The dispersive e�ects of the scatterers cause a distortion of the band
structure and the formation of gaps near the Brillouin zone. Whether
such a splitting occurs depends on the symmetry properties of the par-
ticular point in the Brillouin zone. Furthermore, near the resonance
frequency ω0 of the two-level system, another genuine band gap de-
velops. The width of the gap depends on the coupling strength and
signi�es essentially a polariton-type propagation in the crystal [10].

2. ω0 ≈ ωBZ (Fig. 2.a)
When ω0 is tuned close to ωBZ , combinations of distortion and po-
lariton gap occur. The polariton gap disappears due to the anisotropic
nature of the bandstructure near the Brillouin zone.

4. Einstein A Coe�cient in a Inhomogeneous Dielectric Medium

The spontaneous emission properties of an atom inside a photonic band
gap material is an interesting problem both for applications and for a more
fundamental understanding of the quantum properties of an inhomogeneous
dielectric system.

It is well known that a `density of states' of the radiation �eld appears in
the expression for the Einstein coe�cient [3]. It turns out that in dielectric
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systems with a spatially varying dielectric constant, it is a subtle question
which density of states is appearing in the Einstein coe�cient. For this
purpose we will �rst discuss the proper de�nition of the density of states. We
would like to use the eigenmodes of the scalar wave equation as described
by the Helmholtz equation:[

−∇2 − ω2j ε
]
|ψj〉 = 0, (8)

where 〈~r|ε|~r〉 = ε(~r) is the scalar equivalent of the `dielectric constant'.
Unfortunately, Eq. (8) is not a conventional eigenvalue equation. Let us try
to manipulate this scalar wave equation into a proper eigenvalue equation.
Dividing by ε is tempting, and gives[

−ε−1∇2 − ω2j

]
|ψj〉 = 0 . (9)

This looks like a conventional eigenvalue equation but it is not, as the opera-
tor ε−1∇2 is not hermitian. To cope with this complication, we symmetrize
and �nd, [

−ε−1/2∇2ε−1/2 − ω2j

] ∣∣∣ε1/2ψj

〉
= 0 . (10)

This is a conventional eigenvalue equation and can be written compactly
as

L |�j〉 = ω2j |�j〉 ,where
∣∣∣ε1/2ψj

〉
≡ |�j〉 . (11)

The hermitian operator L is de�ned as

L ≡ −ε−1/2∇2ε−1/2 . (12)

The set, {|�j〉}, can be normalized according to: 〈�j |�k〉 = δjk. The secular
Eq.(3) given earlier is essentially the matrix of L with respect to the basis
|ε1/2~p〉.

As L is Hermitian its eigenvalues are real and we can count the density of
states in the usual way. The total density of states (TDOS) with eigenvalue
ω2 between ω2 and ω2 + dω2 is

NT (ω
2) =

∑
j

δ(ω2 − ω2j ), (13)

which can be written as a trace according to,

NT (ω
2) = Tr

[
δ(ω2 − L)

]
. (14)

It is often more convenient to have the density of states as a function of ω
rather than ω2,

NT (ω) = 2ωN(ω2) . (15)
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It is now also possible to decompose NT (ω) into local contributions (LT-
DOS) according to

NT (ω,~r) = 2ω〈~r| δ(ω2 − L) |~r〉. (16)

We have obtained a well-de�ned density of states (16) that is found by diag-
onalizing an Hermitian operator and by counting eigenvalues. This genuine
density of states NT (ω,~r) is, for instance, important when discussing the
transport of radiative energy in the dielectric [11]. However, NT (ω,~r) is not
the local density that is featuring in the Einstein coe�cient. To make this
point clear, it is worth while to manipulate the delta-function in Eq. (14),

δ(ω2 + ε−1/2∇2ε−1/2) = ε1/2δ(εω2 +∇2)ε1/2. (17)

Here the general property of the delta function: δ(ax) = (1/a)δ(x), is used.
The new delta function on the rhs. contains the wave operator of the wave
equation, εω2 + ∇2. By the cyclic permutation property of a trace, the
square root can be eliminated to give:

NT (ω) = 2ωTr
[
ε1/2δ(εω2 +∇2)ε1/2

]
= 2ωTr

[
εδ(εω2 +∇2)

]
. (18)

We will now derive the correct expression for the Einstein A coe�cient
inside a spatial dependent dielectric structure. The emission rate τ is a
function of the position

−→
R of the impurity atom that is incorporated in the

dielectric, and obtained by applying Fermi's golden rule [3]:

τ(
−→
R ) =

2π

�h

∑
f

∣∣∣< f |~µ · ~Eop(
−→
R )|i >

∣∣∣2 δ(Ef − Ei). (19)

Here the initial state |i〉 = |σ〉i ⊗ |ψ〉i and �nal state |f〉 = |σ〉f ⊗ |ψ〉f
describe the state of the atom |σ〉 and the light �eld in scalar approximation
|ψ〉. The electric �eld is represented by the quantum-mechanical operator
~Eop.

The set {|�j〉} can serve as a basis to quantize the radiation �eld:

~Eop(~r) =
∑
j

{√
�hωj

2ε(~r)
ia†j �j(~r) exp(iωjt) + h.c.

}
, (20)

with a†j the creation operator of the �eld mode.
With this de�nition, the Hamiltonian of the radiation be can written

as H =
∑

j �hωja
†
jaj . Substitution of (20) in the �eld part of the Einstein

coe�cient (19) gives:
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τ(
−→
R ) = A 2ω

∑
j

ε(
−→
R )−1�j(

−→
R )δ(ω2 − ω2j )�j(

−→
R )

= A 2ωε(
−→
R )−1〈−→R |Tr(ω2 − L)|−→R 〉 ≡ A 2ωNR(ω,

−→
R ), (21)

where A is proportional with the dipole transition moment of the two level
atom.

This demonstrates that the Einstein coe�cient is proportional to what
we call the local density of states of the radiation,

NR(ω,~r) ≡ ε(~r)−1NT (ω,~r), (22)

and not the total DOS is featuring as given in (18). Writing ε(~r) ≡ 1+δε(~r)
we �nd

NT (ω,~r) = NR(ω,~r) + δε(~r)NR(ω,~r) ≡ NR(ω,~r) +NM (ω,~r). (23)

Recapitulating, the e�ect of the inhomogeneous dielectric constant ε(~r)
is twofold. Firstly, the emission rate depends on the position. This was
allready found in the measurements of the emission lifetime of atoms in
a homogeneous dielectric medium near an interface[13, 14] and in micro-
cavities[15]. For the dipole lattice this means that the emission rate may
depend considerably on the position of the radiating dipole in the unit cell
[16, 17, 18]. Secondly, the emission rate is not proportional to the local
density of states based on the mode density given in Eq.(18), but to the
local density of states for radiation given in Eq.(23), (LRDOS). Only part
of the modes are actually contributing to the emission rate.

5. Emission Rates in a Lattice of Resonant Dipoles

We will illustrate numerically the dependence of the emission rate on the
position in the unit cell and the di�erence between the total density of
states (18) and the radiation density of states (23) using the earlier men-
tioned model of resonant dipoles on a lattice. For the dipolar lattice the
contribution to the total RDOS and the local MDOS can be separated
explicitly [12]:

Ndip
R (ω) =

∑
~k

F (ω,~k)

F (ω,~k) + 1
δ(ω2 − ω2~k)

Ndip
M (ω) =

∑
~k

1

F (ω,~k) + 1
δ(ω2 − ω2~k), (24)
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Figure 1. Photonic properties of an fcc lattice of resonant atoms with a resonance
frequency at ω0 a = 5 < ωBZ and β
/a2 = 25 a) The photonic bandstructure. b) The
total density of states NT (ω) and the total density of states for the radiation NR(ω) and
matter NM (ω) scaled to the density of states in vacuum Nfree(ω). c) The local density of
states for the radiating �eld NR(ω,~r) on a traject moving from ~r = (0, 0, 0) to ~r = (a, 0, 0)
with a = 1 the fcc latticeconstant.
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Figure 2. Same as Fig.1, with ω0 a = 7.0 ≈ ωBZ and β
/a2 = 25.
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with

F−1(ω,~k) = 4παω4
∑
~g

[
(~k − ~g)2 − ω2

]−2
. (25)

The separation of the local properties of radiation and matter in Eq.
(23) can be performed explicitly for a lattice of dipoles. Due to the pointlike
character of the dipole:

NM (ω,~r) =
∑

i

δ(~r − ~ri)Ndip
M (~r), (26)

with ~ri the position of an atom on the lattice.
For positions ~r 6= ~ri, NM (ω,~r) = 0 and the radiative part is:

Ndip
R (ω,~r) =

∑
~k

|ψ~k
(~r)|2δ(ω2 − ω2~k), (27)

with ψ~k
(~r) the eigenfunctions obtained by diagonalizing the secular equa-

tion.
We calculated the density of states for the two cases discussed previ-

ously.

1. ω0 well within the �rst BZ (Fig. 1.b,c)
The polariton gap in the band structure is associated with a suppressed
DOS (Fig. 1.b). The LRDOS is plotted in Fig. 1.c and shows clearly
a spatial and energy dependence. As expected, the DOS vanishes in
the polariton gap. Above and below the gap the LRDOS has a distinct
structure and is well below the values on the atomic positions. In par-
ticular, for energies above the gap, at ~r ≈ (0.1a, 0, 0), the LRDOS is
almost completely suppressed for an excited atom located there. This
would correspond to an in�nite emission lifetime and could lead to a
bound light state as discussed by John et al. [19].

2. ω0 near the �rst BZ (Fig. 2.b,c)
Although the polariton gap is destroyed by the inuence of the Bril-
louin zone, there is still a considerable structure in the total DOS
(Fig. 2.b) and in the LRDOS (Fig. 2.c). Similar suppression of the
LRDOS as seen in case 1 survives.

6. Conclusion

In this work we described the properties of atomic lattices by applying an
elastic t-matrix formalism. The polariton character of the resonance results
in a gap in the frequency spectrum. Near the Brillouin zone of the crystalline
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structure the inuence of the anisotropy destroyes the polariton gap. The
emission properties inside the crystal are drastically modi�ed at positions
in between atomic sites and is proportional to the local density of states
of the radiation, which is only a part of the total density of states. This
should also hold for photonic band gap materials in general. Tayloring the
positions of the active centers inside the unit cell relaxes the need for a full
band gap to e�ciently suppress spontaneous emission. We only presented
calculations in scalar approximation. Extension of the results to the vector
equations is under way maintaining many of the features in the present
scalar approximation.
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