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The aim of this lecture is to show how the theory of pseudo-

differential operators (ΨDO’s) builded on the geometry of

phase space (ray theory, Hamiltonian formalism) can be used in

order to compute the high frequency asymptotics of the corre-

lations in the method of Passive Imaging.

I will first review the general formula which gives the

field correlation from the source correlation.

I will then give a very brief introduction to ΨDO calculus and

apply it to the “semi-classical calculus of the correlations”.

2



I will NOT discuss the physical assumptions!

More details can be found in my paper in Nonlinearity 22 (2009).

Other similar contributions by Josselin Garnier & George Papan-

icolaou.
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1. Passive imaging: a general formula for the correlation

2. (A very short introduction to) Semi-classics: (a) Pseudo-

differential operators (ΨDO’s) (b) Random fields and semi-

classics (c) Ray dynamics; (d) Green function; (e) Egorov

Theorem.

3. Semi-classical formulas for the correlation
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I will discuss the case of a “Schrödinger like” wave equation

du

dt
+ Ĥu = f

where u is the field and f the source noise.

• Technically simpler than wave equations: first order time

derivative

• The wave equations (acoustical waves, seismic waves) can

be decoupled into several “Schrödinger like” equations

utt − Lu = 0 / vt = ±i
√
−Lv
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1. Passive imaging: a gen-
eral formula for the correla-
tion

Assuming some source of noise being propagated by a linear

wave equation, there is a relation between

• The correlation

CA,B(τ) = E
(
u(A, t)⊗ u(B, t− τ)?)

(E = ensemble average or time average) of the fields u(x, t)

between 2 points A and B

• The Green function for the wave equation.
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Here is the starting point:

du

dt
+ Ĥu = f (1)

• u(x, t), x ∈ Xd the field (scalar or vector valued)

• Ĥ the deterministic smooth (matrix) Hamiltonian, acting

on L2(X, CN) includes the attenuation:

∃k > 0, Re < Ĥu|u >≥ k‖u‖2

• f(x, t) the random source field assumed to be stationary in

time and ergodic.
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• A model case will be the Schrödinger operator:

−i~ut −
~2

2
∆u + V (x)u− i~ku = −i~f, k > 0 .

• A more complicated case will be any kind of wave equation:

u(x, t) :=

(
u
ut

)
and

utt + aut −∆u = f, a ≥ 0

which corresponds to

Ĥ =

(
0 Id
−∆ a

)
and

f :=

(
0
f

)
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The causal solution of Equation (1) is given by:

u(x, t) =
∫ 0

−∞
ds
∫
X

P (−s, x, y)f(t + s, y)|dy| (2)

where P , the (time dependent) Green function, is defined as
follows:

P is the integral kernel of Ω(t) = exp(−tĤ)

(Ω(t)v)(x) =
∫
X

P (t, x, y)v(y)|dy| .

In what follows, we will denote [A](x, y) the integral kernel of the
operator A.

Ω(t + s) = Ω(t) ◦Ω(s) rewrites∫
X

P (t, x, y)P (s, y, z)|dy| = P (t + s, x, z)
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Correlation of the field

We define the correlation matrix

CA,B(τ) := lim
T→+∞

1

T

∫ T

0
u(A, t)⊗ u?(B, t− τ)dt

or

C
αβ
A,B(τ) := lim

T→+∞
1

T

∫ T

0
uα(A, t)uβ(B, t− τ)dt

Putting u(A, t), u(B, t− τ) as given by Equation (2), we get:

CA,B(τ) = lim
T→+∞

1

T

∫ T

0
Φ(Ttf)dt (3)

with

Φ(f) =
∫ 0
−∞ ds

∫ 0
−∞ ds′

∫
X×X |dxdy| · · ·

· · ·P (−s, A, x)f(x, s)⊗
(
P (−s′, B, y)f(y, s′ − τ)

)?
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Assuming the correlation of the source given by

E(f(x, s)⊗ f?(y, s′)) = δ(s− s′)K(x, y)

and ergodicity, we get, for τ > 0:

CA,B(τ) =
∫ 0

−∞
ds
∫
X2

|dx||dy|P (τ − s, A, x)K(x, y)(P (−s, B, y))?

(4)

and C
αβ
A,B(−τ) = C

βα
B,A(τ).
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For τ > 0, we can rewrite Equation (4) in an operator form:

CA,B(τ) = [Ω(τ)Π](A, B) (5)

with

Π :=
∫ ∞
0

Ω(s)KΩ?(s)ds (6)

where K is the integral operator whose kernel is K(x, y) (the

correlation of the source). This is the completely general relation

between the correlation and the Green function.

The semi-classical asymptotics of the Green function is well

known (ray theory, Van Vleck formula, Fourier Integral Oper-

ators). We will try to compute Π in the semi-classical regime.
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We are lead to the following problem: find the high fre-

quency behavior of Ω(s)KΩ?(s) under some appropriate as-

sumptions on K
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If f is a white noise, i.e. K = Id, we have

CA,B(τ) = [Ω(τ)
∫ ∞
0

Ω(s)Ω?(s)ds](A, B)

If we assume Ĥ = Ĥ0 + kId with Ĥ0 self-adjoint, we get

CA,B(τ) =
e−2k|τ |

2k
P (τ, A, B) (7)

In general, i.e. for non homogeneous noises, Equation (7) is only

valid approximately!
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Case of the wave equation:

utt + 2kut −∆u = f (8)

Let Q =
√
−∆− k2 and G(t, x, y) the integral kernel of sin tQ

Q .

We get

u(x, t) =
∫ ∞
0

e−ksds
∫
X

G(s, x, y)f(y, t− s)|dy|

And the correlation, for τ > 0, in case of a white noise,

CA,B(τ) =
e−kτ

4(Q2 + k2)

[
cos τQ

k
+

sin τQ

Q

]
(A, B)

The τ derivative of CA,B(τ) is

−
e−kτ

4k
G(τ, A, B)
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2. Semi-classics

We want a nice class of operators for which we can study the

high frequency limits of Ω(s)BΩ?(s).

They are called the pseudo-differential operators (ΨDO’s) and

were introduced in the sixties by Calderon, Zygmund, Nirenberg,

Hörmander as a tool in the study of linear partial differential

equations with non constant coefficients.
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In some sense, they give the geometrical extension of Hamilto-

nian formalism of classical mechanics to wave mechanics.

In applications to physics, it is often called the ray method.

The same tools apply to the study of the semi-classical limit

of quantum mechanics and to the high frequency limit of wave

equations (acoustic, electromagnetic or seismic waves).

There is a small parameter ε > 0 in the theory which can be

Planck “constant” ~ or the inverse of the frequency ω−1.
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• (a) ΨDO’s

• (b) Random fields: power spectra and correlations.

• (c) Ray dynamics

• (d) Semi-classical Green functions

• (e) Egorov Theorem
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(a) ΨDO’s

ε will be a small parameter: in what follows

• ε ∼ inverse of the frequency

• ε ∼ typical correlation distance of the noisy source, i.e. K(x, y) =

k(x, y, x−y
ε )
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A pseudo-differential operator (ΨDO) on Rd

Aε := Opε(a)

is defined using a function a(x, ξ) : Rd ⊕ Rd → C (a is called the

symbol) on the phase space. a is assumed to be

• smooth

• homogeneous near infinity in ξ

Aε(f)(x) =
1

(2π)d

∫
ei(x−y|ξ)a

(
x + y

2
, εξ

)
f(y)|dydξ|
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Simple examples:

• Opε(ξj) = ε
i

∂
∂xj

• Opε(xj) is the multiplication by xj

• Opε(χ(ξ)) is a frequency cut-off

• Opε(|ξ|2 + V (x)) = −ε2∆ + V (x): a Schrödinger operator
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Pseudo-differential operators act nicely on WKB functions:

Opε(a)(A(x)eiS(x)/ε) ≈ a(x, S′(x))A(x)eiS(x)/ε

The integral kernel of Opε(a) is

ε−dâ

(
x + y

2
,
x− y

ε

)
where â(x, X) is the partial Fourier transform w.r. to ξ of a(x, ξ).
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The main properties are the following ones which hold as ε → 0:

• Composition:

Opε(a) ◦Opε(b) ≈ Opε(ab)

• Brackets:

[Opε(a),Opε(b)] ≈
ε

i
Opε{a, b}

where

{a, b} =
d∑

j=1

(
∂a

∂ξj

∂b

∂xj
−

∂a

∂xj

∂b

∂ξj

)

is the Poisson bracket

23



Wigner functions:

Wigner functions define the localization of energy in phase space.

The Wigner function Wu of u is the function on the phase space

defined by ∫
aWu|dxdξ| =< Opε(a)u|u > ,

or

Wu(x, ξ) =
1

(2π)d

∫
e−ivξu

(
x +

εv

2

)
ū

(
x−

εv

2

)
|dv| .

We have ∫
Wu(x, ξ)|dξ| = |u|2,

∫
Wu(x, ξ)|dx| = |Fu|2 .
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(b) Random fields: power spectra and correlations

Let f = f(x) be a random field.

1) The correlation

C(x, y) := E(f(x)f̄(y))

2) The power spectrum

P := E(Wf)

is a function on the phase space.
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P and C are related by:

C(x,y) is ((2πε)d times) the operator kernel of Op(P).

P is ((2πε)−d times) the symbol of the operator C

C and P carry the same information.
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Ex1: the white noise

C = δ(x− y), P = 1/(2πε)d.

Ex2: a stationary noise on R with ε = 1

C(s, t) = F (s− t) and P (s, ω) is the Fourier transform F(F )(ω).
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(c) Ray dynamics

If H(x, ξ) is the Hamiltonian function, the associated ray dynam-

ics is defined by the vector field XH:
dxj
dt = ∂H

∂ξj
dξj
dt = −∂H

∂xj

If H = 1
2‖ξ‖

2 + V , we get Newton equations. If H = 1
2gijξiξj, we

get the geodesics.

We will denote by φt the flow of XH:

d

dt
(φt(z)) = XH(φt(z))
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(d) Green function

Let us assume that our wave dynamics, Ω(τ) = exp(−τĤ), is

generated by Ĥ = i
εOpεH. What is the semi-classical behavior

of P?

P (τ, x, y) is a sum of contributions from rays going from y to x

in time τ .
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Van Vleck formula

P (τ, A, B) ∼
∑

γ∈Rτ
AB

Pγ (9)

with Rτ
AB the set of rays from B to A in time τ .

In the generic case (non caustic points)

Pγ ∼ aγ(ε)e
i
εS(γ)

where S is the Lagrangian action S(γ) =
∫ τ
0 (ξdx−Hdt).

Let us remark that as a function of A and B, S is a generating

function of the flow at time τ .
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Formally, as it is well known, vV formulas can be derived from
Feynman path integral, by applying stationary phase:

(FPI) P (τ, A, B) =
∫
Ωτ

AB

eiS(γ)/hdγ

where

• Ωτ
AB is the set of paths in the configuration space from B to

A

• dγ is a (mathematically ill defined) measure on Ωτ
AB

• S(γ) =
∫ τ
0 L(γ(t), γ̇(t))dt is the (Lagrangian) action integral.

Non caustic condition is equivalent to non degeneracy of the
Hessian of S.
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(e) Egorov Theorem

Let us consider the scalar case with no attenuation (Ĥ is self-

adjoint, unitary dynamics) Ω(t) = exp(−itĤ/ε) with Ĥ = Opε(H).

Théorème 1 (Egorov, 70’s) If A = Opε(a),

At := Ω(−t)AΩ(t) ≈ Opε(a ◦ φt)

where φt is the Hamiltonian flow of H.
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Proof:

it is enough to look at the derivative, say at t = 0:

d

dt|t=0
At =

i

ε
[Ĥ, A]

and by the ΨDO calculus:

d

dt|t=0
At ≈ Opε{H, a}

and remember

{H, a} = XHa (=
d

dt|t=0
(a ◦ φt) ) .
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3. A semi-classical formula
for the correlation
We will assume that the power spectrum of the random source
f(x, t) is p(x, ξ) (with p ≥ 0), ie

C(x, y, s, t) = k

(
x + y

2
,
x− y

ε

)
δ(s− t)

where k is the partial Fourier transform of p w.r. to ξ.

Applying the previous tools, we want to compute the leading
terms in the behavior of CA,B(τ):

we get

CA,B(τ) = [Ω(τ)Π](A, B)

where Π is a ΨDO whose symbol π(x, ξ) can be explicitly com-
puted as a (convergent) integral over the trajectories (rays) ar-
riving at the point x.
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More precisely, if such a phase space trajectory γ satisfies γ(0) =

(x, ξ), π(x, ξ) is an integral over the t < 0 part of γ. This integral

is non-vanishing if the t < 0 part of γ crosses the support of the

power spectrum p of f .
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From Egorov Theorem, assuming for simplicity a constant at-

tenuation k, the symbol π ≥ 0 of

Π =
∫ ∞
0

Ω(s)KΩ?(s)ds

is given by

π(x, ξ) =
∫ 0

−∞
p(φt(x, ξ))e2ktdt

with p the power spectrum of the source noise.
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Using Van Vleck formula, we get the main result

CA,B(τ) =
∑
γ

π(B, (ξB)γ)Pγ

(and in the generic case

CA,B(τ) =
∑
γ

π(B, (ξB)γ)aγ(ε)e
iS(γ)/ε )

with (ξB)γ the value of the impulsion at B of the trajectory γ.
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We see that this is very close to the Green function

P (τ, A, B) =
∑
γ

Pγ

• Same phases for the contribution of each trajectory

• Modification of the amplitude in terms of the ray dynamics,

the power spectrum of the source and the attenuation
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