

Point processes for the study of multiple scattering signals

Nicolas Le Bihan

GIPSA-Lab, CNRS, Grenoble, France

<u>Collaborators</u> : L. Margerin (CEREGE), S. Said (GIPSA-Lab) and J.H. Manton (Univ. of Melbourne)

Coda waves

Coda waves \neq deterministic description of waves

 \Rightarrow Multiple scattering, equipartition theory to study coda waves

Coda waves

Coda waves \neq deterministic description of waves

 \Rightarrow Multiple scattering, equipartition theory to study coda waves

 \Rightarrow Random signal model

Depolarization effect

Polarization state *spreading* on Poincaré sphere

Propagation of polarized light through optical fiber with birefringence.

Depolarization effect

Polarization state *spreading* on Poincaré sphere

Propagation of polarized light through optical fiber with birefringence.

Birefringence $\Rightarrow \prod$ of random rotations of the polarization state

Col de Porte, January 14^{th} , 2010

Depolarization effect

Polarization state *spreading* on Poincaré sphere

Propagation of polarized light through optical fiber with birefringence.

Birefringence $\Rightarrow \prod$ of random rotations of the polarization state

 \Rightarrow Statistics on S^2 and SO(3), and noncommutative harmonics

Stochastic processes models & tools

- Point processes and Lévy processes
- Harmonic analysis on compact Lie groups
- Stochastic differential equations (paths observation)
- Estimation theory
- Inverse problem (statistical inference)

Stochastic processes and random media: Existing work

\star Physics

- Compound Poisson process (CPP) for forward scattering (*Ning et al.*, PRE 95) \hookrightarrow Real-valued CPP + direct problem
- Lévy processes & depolarization (Said et al., WCRM 08)
 → Noncommutative harmonic analysis

***** Signal, Information & Statistics

- Communication & random media (*Franceschetti et al.*, IEEE & JOSA 04,06,07) \hookrightarrow 2D Random walk + percolation
- Information transfert & random media (Skipetrov, PRE 03) \hookrightarrow Channel capacity + multiple scattering
- Statistical inference & multiple scattering (Le Bihan et al., PRE 09)
 → CPP on Lie groups + random media characterisation

Forward multiple scattering

• Distribution of intensity $I(\theta)$ and direction of propagation $\vec{\mu}$

Forward multiple scattering

• Distribution of intensity $I(\theta)$ and direction of propagation $\vec{\mu}$

 \hookrightarrow Stochastic process model for $\vec{\mu}$

Outline

- 0 Introduction
- 1 Compound Poisson Processes (CPP)
- 2 CPP and multiple scattering signals
- 3 Decompounding and estimation of the phase function
- 4 CPP and the geometric phase
- 5 Conclusions

\star <u>Definition</u>

The random process y(t) defined as the random sum:

$$y(t) = \sum_{i=1}^{N(t)} x_i$$

where x_i are i.i.d. real valued random variables and N(t) is a Poisson process (parameter λ) independent of x_i , is called a Compound Poisson Process.

\star Some properties

- Mean: $\mathbb{E}[y(t)] = m_x \lambda t$
- Variance: $Var[y(t)] = (\sigma_x^2 + m_x^2)\lambda t$
- Characteristic function: $\Phi_{y(t)}(u) = \mathbb{E}[e^{uy(t)}] = \exp(\lambda t(\Phi_x(u) 1))$

where $\sigma_x^2 = \mathbb{E}[(x_1 - \mathbb{E}[x_1])^2]$ and $\Phi_x(u) = \mathbb{E}[e^{ux_1}]$

 \star Examples of sample paths

* <u>Note</u>: $y(t) \approx \mathcal{N}\left(m_x \lambda t, (\sigma_x^2 + m_x^2) \lambda t\right)$ when $t \to +\infty$

Compound Poisson process on SO(3)

\star <u>Definition</u>

The random process Y(t) defined as the random product:

$$Y(t) = \prod_{i=1}^{N(t)} X_i$$

where X_i are i.i.d. SO(3)-valued random variables and N(t) is a Poisson process (parameter λ) independent of x_i , is called a Compound Poisson Process.

 \star <u>Characteristic function</u>

$$\Phi_{Y(t)}(l) = \exp\left(\lambda t (\Phi_x(l) - I_{2l+1})\right)$$

where I_{2l+1} is the $(2l+1) \times (2l+1)$ identity matrix and exp is the matrix exponential.

Characteristic function for SO(3)-valued random variables

\star Peter-Weyl theorem on SO(3)

Any function $f \in L^2(SO(3), \mathbb{C})$ with respect to the Haar measure on SO(3) has a Fourier expansion given by:

$$f(\phi,\theta,\psi) = \sum_{l\geq 0} \sum_{m=-l}^{l} \sum_{n=-l}^{l} (2l+1) \hat{f}_{mn}^{l} \overline{D_{mn}^{l}(\phi,\theta,\psi)}$$

where ZXZ convention is used for Euler angles (ϕ, θ, ψ) , and where the Wigner-D functions $D_{mn}^{l}(\phi, \theta, \psi)$ are given by:

$$D_{mn}^{l}(\phi,\theta,\psi) = e^{im\phi}P_{mn}^{l}(\cos\theta)e^{in\psi}$$

 \star SO(3)-valued random variables

If f is the pdf of a SO(3)-valued random variable \Rightarrow its characteristic function is the set of $(2l+1) \times (2l+1)$ matrices \hat{f}_{mn}^l given by:

$$\hat{f}_{mn}^{l} = \int_{SO(3)} f(\phi, \theta, \psi) D_{mn}^{l}(\phi, \theta, \psi) dg(\phi, \theta, \psi)$$

with $dg(\phi, \theta, \psi)$ the Haar measure on SO(3).

Compound Poisson Process on SO(3) observed on S^2

Consider a unit vector $\mu(t) \in S^2$ consisting in the transitive action of a CPP on SO(3)on an initial vector μ_0 :

$$\mu(t) = \prod_{i=1}^{N(t)} X_i \mu_0$$

37(1)

 \star <u>Characteristic function</u>

$$\Phi_{\mu(t)}(l) = \exp\left(\lambda t (\Phi_x(l) \Phi_{\mu_0}(l) - I_{2l+1})\right)$$

where

- $\Phi_{\mu(t)}(l)$ are (2l+1) vectors
- $\Phi_{\mu_0}(l)$ are (2l+1) vectors
- $\Phi_x(l)$ are $(2l+1) \times (2l+1)$ matrices.

CPP on SO(3) observed on \mathcal{S}^2

 \star Examples of sample paths

CPP on \mathcal{S}^2 with increasing observation time (left to right).

Outline

- 0 Introduction
- 1 Compound Poisson Processes (CPP)
- 2 CPP and multiple scattering signals
- 3 Decompounding and estimation of the phase function
- 4 CPP and the geometric phase
- 5 Conclusions

CPP formulation for multiple scattering

•
$$\mu(t) = \prod_{i=1}^{N(t)} X_i \mu_0$$

- mu(t) and μ_0 are \mathcal{S}^2 -valued
- X_i represent the "random scatterers effect"
- X_i are SO(3)-valued
- The pdf of X_i is the *phase function*
- N(t) is a Poisson process with parameter λ
- $\lambda = 1/\ell$, with ℓ : mean free path (normalized velocity)
- μ_0 is a Dirac at the north pole

***** Decomposition of the solution into orders of scattering

$$I = N(0)I^{(0)} + N(1)I^{(1)} + \dots + N(k)I^{(k)} + \dots$$

 $I^{(k)}$: Angular probability distribution of energy after *exactly k* scattering N(k): probability that the energy has been scattered exactly k times

***** Description of scattering anisotropy

\star Intensity distribution after k scattering events

Incoming plane wave

$$I^{(0)} = \delta(\mathbf{n} - \mathbf{n}')$$

After a single scattering event:

 $I^1 = p(\mathbf{n}, \mathbf{n}')$

Recurrence Formula:

$$I^{(k)} = \int_{4\pi} p(\mathbf{n}, \mathbf{n}') I^{(k-1)}(\mathbf{n}') d^2 n'$$

 \longrightarrow Repeated convolutions on the unit sphere

Simple case: $p(\mathbf{n}, \mathbf{n}') = f(\mathbf{n}.\mathbf{n}') = f(\cos \theta)$

$$f(\cos\theta) = \sum_{l} \hat{f}^{l} P_{l}(\cos\theta)$$

Expansion in Legendre series:

$$I^{(k)}(\theta) = \sum_{\delta} (\hat{f}^l)^k P_{\delta}(\cos \theta)$$

 $f_1 = g$ is the mean cosine of the scattering angle (θ) = anisotropy parameter

***** Probability distribution of scattering events

Poisson Distribution

$$N(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
$$\lambda = \frac{t}{\tau}$$

t: propagation time; $\tau:$ scattering mean free time

 \star A simple example: Henyey-Greenstein phase function

$$p(\cos\theta, g) = \frac{1 - g^2}{2\left(1 - 2g\cos\theta + g^2\right)^{3/2}} \qquad \cos\theta = \mathbf{n} \cdot \mathbf{n}'$$

 $g = \int_{-1}^{1} p(\cos \theta) \cos \theta d \cos \theta$ is the anisotropy parameter. After k scattering: $I^{(k)} = p(\cos \theta, g^k)$

Example for g = 0.4

\star Examples for different g

<u>Note</u>: notation abuse: $\cos \theta = \mu$, the cosine of the scattering angle.

\star The noncommutative harmonic analysis point of view

The CPP model:

$$\mu(t) = \prod_{i=0}^{N(t)} X_i \mu_0$$

The probability density function of $\mu(t)$ is given by:

$$p_{\mu(t)} = \sum_{n=0}^{\infty} \left[p(x|N(t) = n) * p_{\mu_0} \right] p(N(t) = n) = \sum_{n=0}^{+\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} \left(p_x^{\otimes n} * p_{\mu_0} \right)$$

<u>Assumptions</u>: μ_0 is at the north pole and p_x , the *phase function*, is **inverse invariant** Then:

•
$$D_{mn}^l(\phi,\theta,\psi) \to P^l(\cos\theta)$$

• $p_x(\cos\theta) = \sum_{l\geq 0} (2l+1)\hat{f}^l P^l(\cos\theta)$, with $\hat{f}^l = g^l$ in the Henyey-Greenstein case.

$$\Rightarrow \left| p_{\mu(t)} = \sum_{l \ge 0} (2l+1) \exp\left(\lambda t (\hat{f}^l - 1)\right) P^l(\cos\theta) \right|$$

\star The noncommutative harmonic analysis point of view

The CPP model:

$$\mu(t) = \prod_{i=0}^{N(t)} X_i \mu_0$$

The probability density function of $\mu(t)$ is given by:

$$p_{\mu(t)} = \sum_{n=0}^{\infty} \left[p(x|N(t) = n) * p_{\mu_0} \right] p(N(t) = n) = \sum_{n=0}^{+\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} \left(p_x^{\otimes n} * p_{\mu_0} \right)$$

<u>Assumptions</u>: μ_0 is at the north pole and p_x , the *phase function*, is **inverse invariant** Then:

•
$$D_{mn}^l(\phi,\theta,\psi) \to P^l(\cos\theta)$$

• $p_x(\cos\theta) = \sum_{l\geq 0} (2l+1)\hat{f}^l P^l(\cos\theta)$, with $\hat{f}^l = g^l$ in the Henyey-Greenstein case.

$$\Rightarrow \left| p_{\mu(t)} = \sum_{l \ge 0} (2l+1) \exp\left(\lambda t (\hat{f}^l - 1)\right) P^l(\cos \theta) \right|$$

 $\begin{array}{ll} z: {\rm slab \ thickness} & \ell^* = \ell/(1-g): {\rm transport \ mean \ free \ path} \\ \ell: {\rm mean \ free \ path} & {\rm Poisson \ distribution:} \ \lambda = \frac{1}{\ell} \end{array}$

Comparison between simple CPP Analytical Formula and Monte-Carlo simulations

Non-uniform approximation Remark: Much faster than M-C Simulations for large anisotropy

Comparison of Monte Carlo simulation with Diffusion approximation:

$$I(\mu) = \mu \left(1 + \frac{3\mu}{2}\right)$$

Outline

- 0 Introduction
- 1 Compound Poisson Processes (CPP)
- 2 <u>CPP and multiple scattering signals</u>
- **3** Decompounding and estimation of the phase function
- 4 CPP and the geometric phase
- 5 Conclusions

Decompounding: a nonparametric estimation problem

* Assumptions:

• we are given some **noise free** realizations of $\mu(t)$ at time $T \iff depth(z)$

•
$$\mu(T)$$
 is modeled as a CPP and $p_{\mu(T)} = \sum_{l \ge 0} (2l+1)\hat{\mu}^l P^l(\cos\theta)$

- The dataset is: $[\mu_1, \mu_2 \dots \mu_N]$ (cosine of scattering angles)
- τ is supposed known $\Leftrightarrow \ell$ is known.
- * Empirical estimator of $\hat{\mu}^l$:

$$\widetilde{\hat{\mu}^l} = \frac{1}{N} \sum_{n=1}^N P^l(\mu_n)$$

This is an **unbiaised** estimator with **variance**: $N^{-1}(\mathbb{E}[(P^l)^2(\mu)] - (\hat{\mu}^l)^2)$ Estimator derived from the fact that: $\hat{\mu}^l = \int_{-1}^1 p(\mu(T))P^l(\cos\theta)d\cos\theta$

Phase function and Anisotropy estimation

• <u>Phase function estimate</u>

Using the coefficients $\hat{\mu}^l$, it is possible, by inversion of the characteristic function, to estimate the Legendre coefficients of $p(\cos \theta, g)$, the phase function, with:

$$\widetilde{\hat{f}^l} = \frac{\tau}{T} \ln \widetilde{\hat{\mu}^l} + 1$$

Then, the phase function can be reconstructed:

$$\widetilde{p}(\cos\theta,g) = \sum_{l=0}^{L_{Max}} (2l+1)\widetilde{\widehat{f}}^l P^l(\cos\theta)$$

\bullet Estimate for g

The fact that p is Henyey-Greenstein (Legendre coefficients of the form g^l) allows to give an estimator for the anisotropy g:

$$\widetilde{g} = \left(\frac{\tau}{T}\ln\widetilde{\hat{\mu}^l} + 1\right)^{1/l}$$

Recall that this estimator needs the knowledge of τ .

Decompounding: simulations

Phase function used in the CPP simulation. g = 0.9.

Decompounding: CPP distribution

Scattering angles distribution $(p_{\mu(T)})$ with a CPP where $\lambda T = 4$ (average number of scattering events in time T).

Decompounding: Estimated Legendre coefficients of the H-G phase function with N = 500 (purple), N = 5000 (yellow) and N = 50000 (blue) samples.

Decompounding: anisotropy estimation

Decompounding: Estimated parameter g of the H-G phase function with N = 500 (violet), N = 5000 (yellow) and N = 50000 (blue) samples.

Decompounding: influence of g

Decompounding: Error on Legendre coefficients of the H-G phase function for g = 0.85 (\circ), g = 0.9 (\Box), g = 0.95 (\triangle) and g = 0.99 (∇)

Outline

0 - Introduction

- 1 Compound Poisson Processes (CPP)
- 2 <u>CPP and multiple scattering signals</u>
- 3 Decompounding and estimation of the phase function
- 4 CPP and the geometric phase
- 5 Conclusions

CPP and geometric phase

$\star \; \underline{Model}$

- Polarization & CPP: Parallel transport of the polarization plane over S^2 .
- Polarized CPP Leftrightarrow CPP on SO(3)
- Geometric phase \rightarrow influence on third parameter distribution
- Brownian motion on S^2 : probability of solid angle (path integrals).
- Polarized CPP: angle distribution ?
- Practical issue: observable ?

CPP and geometric phase

Area (closed by geodesic in green) \propto geometric phase

CPP and geometric phase

Euler angle distribution for a CPP on SO(3)Geometric phase information in ψ ?

Outline

0 - Introduction

- 1 Compound Poisson Processes (CPP)
- 2 <u>CPP and multiple scattering signals</u>
- 3 Decompounding and estimation of the phase function
- 4 <u>CPP and the geometric phase</u>
- **5** Conclusions

Conclusions

- Random processes and multiple scattering
- CPP allows modelization of forward multiple scattering
- Decompounding: estimation of phase function, with ℓ known
- Inference on heterogeneous media
- Small angle approximation
- Parametric estimation
- Extension to include spatial information
- Polarization: CPP on SO(3) and geometric phase