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Coda waves
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Coda waves # deterministic description of waves

= Multiple scattering, equipartition theory to study coda waves
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Coda waves # deterministic description of waves
= Multiple scattering, equipartition theory to study coda waves
= Random signal model
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Depolarization effect

Polarization state spreading on Poincaré sphere

Propagation of polarized light through optical fiber with birefringence.
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Depolarization effect

Polarization state spreading on Poincaré sphere

Propagation of polarized light through optical fiber with birefringence.

Birefringence = [ ] of random rotations of the polarization state

= Statistics on §% and SO(3), and noncommutative harmonics
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Stochastic processes models & tools

e Point processes and Lévy processes

e Harmonic analysis on compact Lie groups

e Stochastic differential equations (paths observation)
e Listimation theory

e Inverse problem (statistical inference)
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Stochastic processes and random media: Existing work

* Physics

e Compound Poisson process (CPP) for forward scattering (Ning et al., PRE 95)
— Real-valued CPP + direct problem

e Lévy processes & depolarization (Said et al., WCRM 08)

— Noncommutative harmonic analysis

* Signal, Information & Statistics

e Communication & random media (Franceschetti et al., IEEE & JOSA 04,06,07)

— 2D Random walk 4+ percolation

e Information transfert & random media (Skipetrov, PRE 03)
— Channel capacity + multiple scattering

e Statistical inference & multiple scattering (Le Bihan et al., PRE 09)

— CPP on Lie groups + random media characterisation
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Forward multiple scattering

e Distribution of intensity I(6) and direction of propagation [

Distribution of &

Transmitted
Intensity?

Plane Wave -
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Forward multiple scattering

e Distribution of intensity I(6) and direction of propagation [

Transmitted
Intensity?

Plane Wave

— Stochastic process model for [
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Outline
0 - Introduction
1 - Compound Poisson Processes (CPP)
2 - CPP and multiple scattering signals
3 - Decompounding and estimation of the phase function
4 - CPP and the geometric phase

5 - Conclusions
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Compound Poisson process on R

* Definition

The random process y(t) defined as the random sum:

N (t)

y(t) = Z T

where z; are i.i.d. real valued random variables and N (¢) is a Poisson process

(parameter \) independent of x;, is called a Compound Poisson Process.

* Some properties

o Mean: Efy(t)] = m At
e Variance: Var[y(t)] = (62 +m2)\t
e Characteristic function: @, (u) = E[e"V!] = exp (M(P,(u) — 1))

where 02 = E[(z1 — E[z1])?] and ®,(u) = E[e“*!]
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* Examples of sample paths

A=1

* Note: y(t) = N (mgAt, (07 + m2)At) when t — +o0

Col de Porte, January 14", 2010
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Compound Poisson process on SO(3)

* Definition

The random process Y (t) defined as the random product:

N(t)

vt =] X

where X; are i.i.d. SO(3)-valued random variables and N (%) is a Poisson process

(parameter \) independent of x;, is called a Compound Poisson Process.

* Characteristic function

Py (1) (1) = exp (MN(Px (1) — L2141))

where ;1 is the (20 + 1) x (2l + 1) identity matrix and exp is the matrix exponential.
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Characteristic function for SO(3)-valued random variables

* Peter-Weyl theorem on SO(3)

Any function f € L?(SO(3),C) with respect to the Haar measure on SO(3) has a

Fourier expansion given by:

F(,0,0) =" Y Y 20+ 1)fl,, DL, (0,0, 9)

>0 m=—Iln=-—1

where Z X Z convention is used for Euler angles (¢, 0,), and where the Wigner-D
functions D! (¢,0,1) are given by:

D! (¢,0,9) = e*™? P! (cosf)er™?

* SO(3)-valued random variables

If f is the pdf of a SO(3)-valued random variable = its characteristic function is the
set of (20 +1) x (20 + 1) matrices f.  given by:

= / F(6,60,0)DL, (6, 6,4)dg(e, 0, )
SO(3)

with dg(¢,0,1) the Haar measure on SO(3).

Col de Porte, January 14" 2010
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Compound Poisson Process on SO(3) observed on S§*

Consider a unit vector u(t) € 8 consisting in the transitive action of a CPP on SO(3)

on an initial vector pg:
w(t) = ] Xiro

* Characteristic function

P,y (1) = exp (M(Po ()P (1) — T2141))

where
o &, (1) are (20 + 1) vectors
o &, () are (21 + 1) vectors
o &, (I) are (20 + 1) x (2 + 1) matrices.

Col de Porte, January 14" 2010

16



CPP on SO(3) observed on S

* Examples of sample paths

CPP on 82 with increasing observation time (left to right).

Col de Porte, January 14", 2010
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Outline
0 - Introduction
1 - Compound PeissenProcesses {CPP)
2 - CPP and multiple scattering signals
3 - Decompounding and estimation of the phase function
4 - CPP and the geometric phase

5 - Conclusions
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CPP formulation for multiple scattering

N(t)
Distribution of w(t) L4 ,U'(t) — H XZIU’O
=1

e mu(t) and pg are S%-valued

e X, represent the “random scatterers effect”
e X, are SO(3)-valued

e The pdf of X, is the phase function

e N(t) is a Poisson process with parameter A

e \=1//, with ¢: mean free path (normalized
velocity)

® /o is a Dirac at the north pole

Col de Porte, January 14", 2010 19



* Decomposition of the solution into orders of scattering

I=NOJIY+NOIW 4. 4 NE)TF ...

I®): Angular probability distribution of energy after ezactly k scattering
N (k): probability that the energy has been scattered ezxactly k times

* Description of scattering anisotropy

p(n,n’) : normalized phase function and [ p(n,n’)d*n’ =1
41
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* Intensity distribution after k£ scattering events

Incoming plane wave
19 =§(n—n')

After a single scattering event:
I' = p(n,n’)
Recurrence Formula:
1) = / p(n, ') IF=(n")d?n/

47
— Repeated convolutions on the unit sphere

Simple case: p(n,n’) = f(n.n’) = f(cos0)
f(cos®) = Zf’lPl(cos 6)
l

Expansion in Legendre series:

109(0) = 3" (F')* Ps(cos 0)

)

f1 = g is the mean cosine of the scattering angle (/) = anisotropy parameter

Col de Porte, January 14", 2010
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* Probability distribution of scattering events

1
2 3
1 4
2 5
(k-1)
— \/
’ k
2
Poisson Distribution
A\F A\
4
A= —
-

t : propagation time; 7 : scattering mean free time
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* A simple example: Henyey-Greenstein phase function

1—92

373 cosf =n-n'
2 (1 —2gcosf+ g?)

p(cosb, g) =

1
g = [ p(cosf)cosfdcosh is the anisotropy parameter. After k scattering:
1

I%) = p(cos @, g*)
Example for ¢ = 0.4

19
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* Examples for different ¢

1

o
©

©
©

°
~

o
=2}

Henyey—-Greenstein Phase function
o o o o
N w IS (6]

o
[N
T

o

Note: notation abuse: cosf = pu, the cosine of the scattering angle.
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* The noncommutative harmonic analysis point of view

The CPP model:

u(t) = T Xino

i=0
The probability density function of () is given by:

- = M) g
Py = Y P(@IN() = n) % puy | p(N () = m) = Y e (57" 4 pyy)
n=0 n=0

Assumptions: g is at the north pole and p,, the phase function, is inverse invariant

Then:
o D.,.(¢,0,1) — P'(cosb)

o pi(cost) =) ;50(20+ 1) f' P! (cos 8), with f! = ¢! in the Henyey-Greenstein case.

= | D) = Z(Ql + 1) exp ()\t(fl — 1)) P'(cos 6)

1>0
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* The noncommutative harmonic analysis point of view

The CPP model:

u(t) = T Xino

i=0
The probability density function of () is given by:

- = M) g
Py = Y P(@IN() = n) % puy | p(N () = m) = Y e (57" 4 pyy)
n=0 n=0

Assumptions: g is at the north pole and p,, the phase function, is inverse invariant

Then:
o D.,.(¢,0,1) — P'(cosb)

o pi(cost) =) ;50(20+ 1) f' P! (cos 8), with f! = ¢! in the Henyey-Greenstein case.

= | Pu(t) = Z(Ql + 1)exp ()\t(fl — 1))Pl(cos 0)

1>0
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Simulation: a slab of random medium

Matched Boundary Conditions

__________________________________ 1+ z=I*/16

__________________________________ | z=I*/32

__________________________________ 1 z=I*/64
__________________________________ | z=I*/128
__________________________________ - 7z=0

z : slab thickness ¢*=1¢/(1 —g) : transport mean free path

¢ : mean free path Poisson distribution: \ = %

Col de Porte, January 14", 2010



Henyey-Greenstein Weak Anisotropy g = 0.7

0.1,

Probability

0.0 0.2 04 0.6 0.8 1.0

Comparison between simple CPP Analytical Formula and Monte-Carlo

simulations
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Henyey-Greenstein Large Anisotropy g

= 0.95

1r

0.1

Probability
o
)
o
=

0.0 0.2 04 0.6
u

Non-uniform approximation

0.8 1.0

Remark: Much faster than M-C Simulations for large anisotropy
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Henyey-Greenstein Intensity Distribution for z=I[", g = 0.95

0.010
0.005 |

0.001
5x 10741

Probability

1x107*
5x107° J

1x107°

0.0 0.2 04 0.6 0.8 1.0
u

Comparison of Monte Carlo simulation with Diffusion approximation:

I(u)zu(H%ﬂ)
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3 - Decompounding and estimation of the phase function
4 - CPP and the geometric phase
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Decompounding: a nonparametric estimation problem

* Assumptions:

e we are given some noise free realizations of u(t) at time 7' (< depth z)

o 1(T) is modeled as a CPP and p, (1) = Z(Ql + 1) Pl (cos 6)
1>0

e The dataset is: [p1, 2 - .. un| (cosine of scattering angles)
e 7 is supposed known < /¢ is known.

x Empirical estimator of fi':

~

| N
it = N nz_:l P'(pin)
This is an unbiaised estimator with variance: N~1(E[(P")2(u)] — (4)?)
Estimator derived from the fact that: g! = f_ll p(u(T)) P! (cos B)d cos f

Col de Porte, January 14", 2010
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Phase function and Anisotropy estimation

e Phase function estimate

Using the coefficients ,E:l, it is possible, by inversion of the characteristic function, to
estimate the Legendre coefficients of p(cos 6, g), the phase function, with:

fl:%lnﬁl+1

Then, the phase function can be reconstructed:

LMam

Plcost,g) = 3 (204 1) f1P!(cos 0)
(=0

e Estimate for g

The fact that p is Henyey-Greenstein (Legendre coefficients of the form g') allows to

give an estimator for the anisotropy g:

- 1/1
7= (il +1)

Recall that this estimator needs the knowledge of 7.

Col de Porte, January 14", 2010
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Decompounding: simulations

00O

25000 |
20000 - ;

15000 - ;

Samples

10000 |

O, | | | | | | | | | ‘ ‘ ‘ ‘ | ]

[

10 _05 0.0 05 1.0
Cosine of the scattering angle

Phase function used in the CPP simulation. g = 0.9.
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Decompounding: CPP distribution

8000 - |

2000 - |

O ;\ | | 1 1 | 1 ..—h‘.—n—.‘ 1 | 1 1 1 1 | 1 1 1 1 ;
-1.0 -0.5 0.0 0.5 1.0

Cosine of the scattering angle

Scattering angles distribution (p,(ry) with a CPP where \T' = 4 (average number of

scattering events in time T).
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Decompounding: phase function estimation

1.0

Legendre coefficients
o o o
~ o) o0

<
b

<
o
T

degree (0)

Decompounding: Estimated Legendre coefficients of the H-G phase function with
N =500 (purple), N = 5000 (yellow) and N = 50000 (blue) samples.
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Decompounding: anisotropy estimation

1.0 L A —
09 Mg ]
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Decompounding: Estimated parameter g of the H-G phase function with N = 500
(violet), N = 5000 (yellow) and N = 50000 (blue) samples.
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Decompounding: influence of g

< < -
@) oo -}
T T '

Q
~
T I T T T

Legendre coefficients

degree (0)

Decompounding: Error on Legendre coefficients of the H-G phase function for g = 0.85
(o), g=10.9 (0), g =0.95 (A) and g = 0.99 (V)
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CPP and geometric phase

* Model
e Polarization & CPP: Parallel transport of the polarization plane over S2.
e Polarized CPP Leftrightarrow CPP on SO(3)
e Geometric phase — influence on third parameter distribution
e Brownian motion on S%: probability of solid angle (path integrals).
e Polarized CPP: angle distribution ?

e Practical issue: observable ?

Col de Porte, January 14", 2010
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CPP and geometric phase

Area (closed by geodesic in green) o geometric phase
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CPP and geometric phase
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Euler angle distribution for a CPP on SO(3)
Geometric phase information in ¢ 7
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Conclusions
e Random processes and multiple scattering
e CPP allows modelization of forward multiple scattering
e Decompounding: estimation of phase function, with ¢ known
e Inference on heterogeneous media
e Small angle approximation
e Parametric estimation
e Extension to include spatial information

e Polarization: CPP on SO(3) and geometric phase

Col de Porte, January 14", 2010

44



