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Coda waves

Coda waves 6= deterministic description of waves

⇒ Multiple scattering, equipartition theory to study coda waves

Margerin et al.
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Depolarization effect

Polarization state spreading on Poincaré sphere

−→ −→

Propagation of polarized light through optical fiber with birefringence.

Birefringence ⇒
∏

of random rotations of the polarization state

⇒ Statistics on S2 and SO(3), and noncommutative harmonic analysis
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Stochastic processes models & tools

• Point processes and Lévy processes

• Harmonic analysis on compact Lie groups

• Stochastic differential equations (paths observation)

• Estimation theory

• Inverse problem (statistical inference)
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Stochastic processes and random media: Existing work

⋆ Physics

• Compound Poisson process (CPP) for forward scattering (Ning et al., PRE 95)

→֒ Real-valued CPP + direct problem

• Lévy processes & depolarization (Said et al., WCRM 08)

→֒ Noncommutative harmonic analysis

⋆ Signal, Information & Statistics

• Communication & random media (Franceschetti et al., IEEE & JOSA 04,06,07)

→֒ 2D Random walk + percolation

• Information transfert & random media (Skipetrov, PRE 03)

→֒ Channel capacity + multiple scattering

• Statistical inference & multiple scattering (Le Bihan et al., PRE 09)

→֒ CPP on Lie groups + random media characterisation
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Forward multiple scattering

• Distribution of intensity I(θ) and direction of propagation ~µ

Intensity?

Plane Wave

I(  )θTransmitted

⇒

↑

↑

Distribution of ~µ

⇒ Stochastic process model for ~µ(θ)
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Outline

0 - Introduction

1 - Compound Poisson Processes (CPP)

2 - CPP and multiple scattering signals

3 - Decompounding and estimation of the phase function

4 - CPP and the geometric phase

5 - Conclusions
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Compound Poisson process on R

⋆ Definition

The random process y(t) defined as the random sum:

y(t) =

N(t)∑

i=1

xi

where xi are i.i.d. real valued random variables and N(t) is a Poisson process

(parameter λ) independent of xi, is called a Compound Poisson Process.

⋆ Some properties

• Mean: E[y(t)] = mxλt

• Variance: V ar[y(t)] = (σ2
x +m2

x)λt

• Characteristic function: Φy(t)(u) = E[euy(t)] = exp (λt(Φx(u) − 1))

where σ2
x = E[(x1 − E[x1])

2] and Φx(u) = E[eux1 ]
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⋆ Examples of sample paths

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

t

x
(
t
)

λ = 1

0 1 2 3 4 5 6 7 8 9 10
−25

−20

−15

−10

−5

0

5

t

x
(
t
)

λ = 0.1

0 1 2 3 4 5 6 7 8 9 10
−200

−150

−100

−50

0

50

t

x
(
t
)

λ = 0.001

⋆ Note: y(t) ≈ N
(
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)

when t→ +∞
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Compound Poisson process on SO(3)

⋆ Definition

The random process Y (t) defined as the random product:

Y (t) =

N(t)∏

i=1

Xi

where Xi are i.i.d. SO(3)-valued random variables and N(t) is a Poisson process

(parameter λ) independent of xi, is called a Compound Poisson Process.

⋆ Characteristic function

ΦY (t)(l) = exp (λt(Φx(l) − I2l+1))

where I2l+1 is the (2l+ 1)× (2l+ 1) identity matrix and exp is the matrix exponential.
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Characteristic function for SO(3)-valued random variables

⋆ Peter-Weyl theorem on SO(3)

Any function f ∈ L2(SO(3),C) with respect to the Haar measure on SO(3) has a

Fourier expansion given by:

f(φ, θ, ψ) =
∑

l≥0

l∑

m=−l

l∑

n=−l

(2l + 1)f̂ lmnD
l
mn(φ, θ, ψ)

where ZXZ convention is used for Euler angles (φ, θ, ψ), and where the Wigner-D

functions Dl
mn(φ, θ, ψ) are given by:

Dl
mn(φ, θ, ψ) = eimφP lmn(cos θ)einψ

⋆ SO(3)-valued random variables

If f is the pdf of a SO(3)-valued random variable ⇒ its characteristic function is the

set of (2l + 1) × (2l + 1) matrices f̂ lmn given by:

f̂ lmn =

∫

SO(3)

f(φ, θ, ψ)Dl
mn(φ, θ, ψ)dg(φ, θ, ψ)

with dg(φ, θ, ψ) the Haar measure on SO(3).
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Compound Poisson Process on SO(3) observed on S2

Consider a unit vector µ(t) ∈ S2 consisting in the transitive action of a CPP on SO(3)

on an initial vector µ0:

µ(t) =

N(t)∏

i=1

Xiµ0

⋆ Characteristic function

Φµ(t)(l) = exp (λt(Φx(l)Φµ0
(l) − I2l+1))

where

• Φµ(t)(l) are (2l + 1) vectors

• Φµ0
(l) are (2l + 1) vectors

• Φx(l) are (2l + 1) × (2l + 1) matrices.
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CPP on SO(3) observed on S2

⋆ Examples of sample paths

CPP on S2 with increasing observation time (left to right).
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CPP formulation for multiple scattering

↑

↑

Distribution of µ(t) • µ(t) =

N(t)∏

i=1

Xiµ0

• mu(t) and µ0 are S2-valued

• Xi represent the “random scatterers effect”

• Xi are SO(3)-valued

• The pdf of Xi is the phase function

• N(t) is a Poisson process with parameter λ

• λ = 1/ℓ, with ℓ: mean free path (normalized

velocity)

• µ0 is a Dirac at the north pole
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⋆ Decomposition of the solution into orders of scattering

I = N(0)I(0) +N(1)I(1) + · · · +N(k)I(k) + · · ·

I(k): Angular probability distribution of energy after exactly k scattering

N(k): probability that the energy has been scattered exactly k times

⋆ Description of scattering anisotropy

p(n,n’)
n’

p(n,n′) : normalized phase function and
∫
4π

p(n,n′)d2n′ = 1
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⋆ Intensity distribution after k scattering events

Incoming plane wave

I(0) = δ(n − n′)

After a single scattering event:

I1 = p(n,n′)

Recurrence Formula:

I(k) =

∫

4π

p(n,n′)I(k−1)(n′)d2n′

−→ Repeated convolutions on the unit sphere

Simple case: p(n,n′) = f(n.n′) = f(cos θ)

f(cos θ) =
∑

l

f̂ lPl(cos θ)

Expansion in Legendre series:

I(k)(θ) =
∑

δ

(f̂ l)kPδ(cos θ)

f1 = g is the mean cosine of the scattering angle (θ) = anisotropy parameter
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⋆ Probability distribution of scattering events
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t : propagation time; τ : scattering mean free time
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⋆ A simple example: Henyey-Greenstein phase function

p(cos θ, g) =
1 − g2

2 (1 − 2g cos θ + g2)
3/2

cos θ = n · n′

g =
1∫

−1

p(cos θ) cos θd cos θ is the anisotropy parameter. After k scattering:

I(k) = p(cos θ, gk)

Example for g = 0.4
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⋆ Examples for different g
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Note: notation abuse: cos θ = µ, the cosine of the scattering angle.
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⋆ The noncommutative harmonic analysis point of view

The CPP model:

µ(t) =

N(t)∏

i=0

Xiµ0

The probability density function of µ(t) is given by:

pµ(t) =
∞∑

n=0

[p(x|N(t) = n) ∗ pµ0
)] p(N(t) = n) =

+∞∑

n=0

e−λt
(λt)n

n!

(
p⊗nx ∗ pµ0

)

Assumptions: µ0 is at the north pole and px, the phase function, is inverse invariant

Then:

• Dl
mn(φ, θ, ψ) → P l(cos θ)

• px(cos θ) =
∑
l≥0(2l + 1)f̂ lP l(cos θ), with f̂ l = gl in the Henyey-Greenstein case.

⇒ pµ(t) =
∑

l≥0

(2l + 1) exp
(
λt(f̂ l − 1)

)
P l(cos θ)
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Simulation: a slab of random medium

Matched Boundary Conditions

z=l*/128
z=l*/64

z=l*/32

z=l*/16

z=l*/2

z=0

z : slab thickness ℓ∗ = ℓ/(1 − g) : transport mean free path

ℓ : mean free path Poisson distribution: λ = 1
ℓ
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Henyey-Greenstein Weak Anisotropy g = 0.7
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Henyey-Greenstein Large Anisotropy g = 0.95
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Remark: Much faster than M-C Simulations for large anisotropy
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Henyey-Greenstein Intensity Distribution for z=l∗, g = 0.95
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Decompounding: a nonparametric estimation problem

⋆ Assumptions:

• we are given some noise free realizations of µ(t) at time T (⇔ depth z)

• µ(T ) is modeled as a CPP and pµ(T ) =
∑

l≥0

(2l + 1)µ̂lP l(cos θ)

• The dataset is: [µ1, µ2 . . . µN ] (cosine of scattering angles)

• τ is supposed known ⇔ ℓ is known.

⋆ Empirical estimator of µ̂l:

˜̂µl =
1

N

N∑

n=1

P l(µn)

This is an unbiaised estimator with variance: N−1(E[(P l)2(µ)] − (µ̂l)2)

Estimator derived from the fact that: µ̂l =
∫ 1

−1
p(µ(T ))P l(cos θ)d cos θ
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Phase function and Anisotropy estimation

• Phase function estimate

Using the coefficients ˜̂µl, it is possible, by inversion of the characteristic function, to

estimate the Legendre coefficients of p(cos θ, g), the phase function, with:

˜̂
f l =

τ

T
ln ˜̂µl + 1

Then, the phase function can be reconstructed:

p̃(cos θ, g) =

LMax∑

l=0

(2l + 1)
˜̂
f lP l(cos θ)

• Estimate for g

The fact that p is Henyey-Greenstein (Legendre coefficients of the form gl) allows to

give an estimator for the anisotropy g:

g̃ =
( τ
T

ln ˜̂µl + 1
)1/l

Recall that this estimator needs the knowledge of τ .
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Decompounding: simulations
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Phase function used in the CPP simulation. g = 0.9.
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Decompounding: CPP distribution
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Scattering angles distribution (pµ(T )) with a CPP where λT = 4 (average number of

scattering events in time T ).
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Decompounding: phase function estimation

Decompounding: Estimated Legendre coefficients of the H-G phase function with

N = 500 (purple), N = 5000 (yellow) and N = 50000 (blue) samples.
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Decompounding: anisotropy estimation

Decompounding: Estimated parameter g of the H-G phase function with N = 500

(violet), N = 5000 (yellow) and N = 50000 (blue) samples.
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Decompounding: influence of g

Decompounding: Error on Legendre coefficients of the H-G phase function for g = 0.85

(◦), g = 0.9 (�), g = 0.95 (△) and g = 0.99 (∇)

Col de Porte, January 14th, 2010 38



Outline

0 - Introduction

1 - Compound Poisson Processes (CPP)

2 - CPP and multiple scattering signals

3 - Decompounding and estimation of the phase function

4 - CPP and the geometric phase

5 - Conclusions

Col de Porte, January 14th, 2010 39



CPP and geometric phase

⋆ Model

• Polarization & CPP: Parallel transport of the polarization plane over S2.

• Polarized CPP Leftrightarrow CPP on SO(3)

• Geometric phase → influence on third parameter distribution

• Brownian motion on S2: probability of solid angle (path integrals).

• Polarized CPP: angle distribution ?

• Practical issue: observable ?
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CPP and geometric phase

Area (closed by geodesic in green) ∝ geometric phase
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CPP and geometric phase

Euler angle distribution for a CPP on SO(3)

Geometric phase information in ψ ?
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Conclusions

• Random processes and multiple scattering

• CPP allows modelization of forward multiple scattering

• Decompounding: estimation of phase function, with ℓ known

• Inference on heterogeneous media

• Small angle approximation

• Parametric estimation

• Extension to include spatial information

• Polarization: CPP on SO(3) and geometric phase
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