Radiative Transfer of Seismic Waves

L. Margerin
CEREGE, CNRS, Aix en Provence, France

Atelier sur les ondes élastiques, Col de Porte, 13 janvier 2009

En collaboration avec: N. Le Bihan, M. Campillo, E. Larose, G. Nolet, C.
Sens-Schonfelder, N. Shapiro, B. van Tiggelen, - --

L. Margerin Radiative Transfer of Seismic Waves



Content

@ Introduction to Radiative Transfer

© Solutions of the Radiative Transfer Equation

e Applications of Radiative Transfer

L. Margerin Radiative Transfer of Seismic Waves



Radiative Transfer in Seismology: Why?

Observations
o @ Duration of signal > travel
e | p—— time of ballistic waves
@ Rapid attenuation of direct
W*"’"‘““ waves
e “WW"W TaH ]
o “Cigar”-shaped envelope
PYBE (x10) ™ “m";‘;
T A— @ Pronounced Coda

Role of Scattering

= wisaT Tempsapres T 9

lat=43.021 deg 17 Novembre 2006 10 = 15 h 19.mn 00 s (TU)
lon = 00013 deg Argeles-Gazost (65)

prof =8 km M=50

Crustal earthquake in the Pyrenees
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What is Radiative Transfer?

Definition
Radiative Transfer is a theory aimed at predicting the
spatio-temporal distribution of energy in a scattering medium

The physical concepts of Radiative Transfer

@ Local Energy Balance

@ Angularly resolved energy flux: Specific intensity

@ Scattering strength: mean free path
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references in seismology

@ Introduced by Wu (1985) and developed by Aki, Zeng, Sato
@ Monte Carlo simulations: Gusev and Abubakirov, Hoshiba

@ Sato and Fehler (Wave propagation and scattering in the
heterogeneous Earth, Academic Press, 1998)

@ Dmowska, Sato and Fehler, Eds, Vol. 50 of Advances in
Geophysics, Academic Press, 2008

o IASPEI Task group: scattering and heterogeneity in the earth:
http://www.scat.geophys.tohoku.ac.jp/index.html
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Introduction to Radiative Transfer
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Introduction to Radiative Transfer

The specific intensity

Definition
Z(w, t,r, k) x dS x cos(f) x dt x
dw = Amount of energy within
the frequency band [w,w + dw]
flowing through dS around
direction k during time dt

=
[¢)]

Angularly-resolved energy flux
through a surface
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Introduction to Radiative Transfer

Relation to the wavefield

Wigner-Ville Spectrum
Consider a time-dependent field (t):

+oo

Wi (t,w) = / (W(E — 7/2)b(t + 7/2)") e T dr

— 00

2n

%

= Ename0 @ (-): Ensemble Average

@ Separation of Time
Scales

e Wy Instantaneous
Energy Spectrum
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Introduction to Radiative Transfer

Wave content of the specific intensity

Pl Spatial Wigner-Ville

Ww(X k

/// W(x — 1/2)P(x + r/2)*) €%y

@ Slowly-modulated wave packet

Angular Energy @ Specific intensity contains information on
Spectrum the correlation properties of the wavefield
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Introduction to Radiative Transfer

The Equation of Radiative Transfer

Scalar Case

10 =« =
<C8t +kvx) Z(t,x, k) —

1 1 A1 - - S o7
B </5 + /a> (t, %, k) + % f p(k, K)Z(t,x, K)d?K

/S
[°: scattering mean free path c: wave speed
12: absorption length p(k, k’): scattering anisotropy
Loss
ol = Tout — Iin
Im Iu'u,f
cdt
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Introduction to Radiative Transfer

Assumptions in radiative transfer

Averaging the products of 2 Green functions

Example of scattering Visit the same

Pairing of traj ri
path scatterers airing of trajectories

From Akkermans & Montambaux (2005)
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Introduction to Radiative Transfer

The case of vector waves

The correlation tensor

Fij(x, k) = /// (Wi(x — r/2);(x +r/2)*) e*"d3r

Rotate from the frame (X1, X2, X3) onto the frame (I’El = k, ko, 123):

Take Thako Tioks
r(x7 k) = rlzzﬁl rl;zl;z rR2R3
I

Maks

Interpretation

Mk, P-wave intensity

rl?zl?z’ FR3|~(3: S-wave .intensity along ﬁz, R3 o
rﬁz%,_rﬁsﬁzz Stokes-like pa.\rameters — polarization
Remaining terms: correlation between P and S waves
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Introduction to Radiative Transfer

The equation of radiative transfer for elastic waves

L0 . .
<C 1& + k- Vx> I(t7x7 k) =
. (l—l ¥ |a—1) I(t, x,K) + |—1/p(l2,f<’)I(t,x, K')d*K

| = Diag(/p, Is, Is, Is, Is) c = Diag(vp, vs, vs, Vs, Vs)
I* = Diag(/3, Ij, /5"’7 lsa, 12) T = (lp, Ik, 1,,U, V)

Interpretation of U and V

Linear +45 Linear — Circular Left Circular Right

ST BT
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Solutions of the Radiative Transfer Equation
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Solutions of the Radiative Transfer Equation

Numerical Tests

2-D Gaussian, exponential media
Models of raﬂdom media

Finite-Difference calculations
P wave source

Ensemble average

Elastic R.T.E.

p(k, k') from Born approx.

450 km

1

Monte-Carlo simulations

Przybilla et al., J. Geophys. Res, 111,
B04305, 2006
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Solutions of the Radiative Transfer Equation

Comparison between RT and FD simulations

a=1km e=2% a=3.1km e=5% a=16km e=5%

o Left: t° = 11.4s, weak
anisotropy, weak scattering

e Middle: t°* = 0.5s

@ Right: t* = 0.1s, strong
anisotropy, strong scattering

o1t
W00t b
0.001 [

0.0001 |

o1l
2

W 001 | | r=100km
0001 -

00001 F

@ Excellent agreement even for
strong forward scattering

L
01|

.

£ oo | 1 r=150km

0.001 |-

@ Uniform energy distribution
at long time

0.0001

t(s) t(s) t(s)

Przybilla et al., J. Geophys. Res, 111, B04305, 2006
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Solutions of the Radiative Transfer Equation

Comparison between RT and FD simulations

4 r=50km

@ Excellent prediction of
energy partition on radial
and transverse components

4 r=100km
fv\.‘ @ Equipartition at large time
] o Energy ratios stabilize:

— — o] 2
2 | | Ep s

r=150km

E
'oo
g
g8 8 &
-
_L;

L L L L L L
0 10 20 30 40 50 0 10 20 30 40 50
t(s)

t(s)
Przybilla et al., J. Geophys. Res, 111, B04305, 2006
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Applications of Radiative Transfer
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Applications of Radiative Transfer

Imaging of volcanic heterogeneity

Experiment at Osama Volcano (Japan)

35“30'1 * -l @ 5 Dynamite shots
| | @ Vertical sensors 2Hz
3 ; @ Station spacing:
] S s l 50-150m
S 1 @ Data normalized with
| ; I late coda
1 @ Shot 3 in the 8-16 Hz
WJ a5 o l frequency band

Courtesy of M. Yamamoto
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Applications of Radiative Transfer

Spatial Distribution of Energy

Spatial distribution of the propagating energy
I L L ! L

1.0 sec

. 12500 @ Observe the two slopes

@ Shear waves are mode
1.3 56 converted

Normalized energy
3
>

100 @ Spatial homogenization of
FE g, 14860 energy at late time

0 2 3 4 5 6

1
Distance from S3 shot [km]
Courtesy of M. Yamamoto
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Applications of Radiative Transfer

Role of the scattering parameters

10— |
102 7 . Reference ¢ Largor geg ‘
z g
§ 00 i @ 3-D elastic radiative transfer
> E
g @ Isotropic scattering
w 10 o E
@ Explosion: isotropic P
105 -
0 ) . 6 source
Distance [km] . .
@ Reciprocity:
2
sp— o (VPN ps
@ Reference: ! 2 (VS) !
vP =2.7km/s, vP/v® = /3, IPP =3 @ Vary the ratios /PP /[P* and
km, [PP/IPS =2, [PP/] =3 IPP /[55
°

@ Smaller [55: [PP/[** =6

Courtesy of M. Yamamoto
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Applications of Radiative Transfer

Constraint on medium heterogeneity

F/'rti‘ng of seat/'a/ energy d/"stribum)‘n
I
4

1.1 sec

¥ Inversion results

g 1-359°E @ vP=27km/s
g S o IPP =3.8 km, [P = 2.4/P5,
2 ““‘w-\_‘ 15 sec E |PP — 3[ss

— @ Absorption: @; = 100

@ Extremely strong scattering:
[P~ [* ~ 1km

@ Coupling parameters: rich
information on the nature of
heterogeneity

Normalized energy

4
ingluding intrinsic absorption Q=100 _

100 ) T T T L
0 1 2 3 4 5

Distance [km]

o

Impressive agreement!

Yamamoto and Sato, to appear in J.G.R.
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Applications of Radiative Transfer

Modeling of Lg blockage through the Pyrenees
Wavepaths through the Pyrenees

T

@ Blockage in a
localized zone

@ Not explained by
Moho jump or faults

Extinction of Lg waves e Monte Carlo
simulations of RT

@ 3-D anistropic
scattering and mode

: M conversion

@ Depth varying

velocity and
ﬁ"ﬁ“ scattering properties

816 603 465 356 3 2
v [kmis]

n Pyrences

western Pyrences
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cations of Radiative Transfer

Undisturbed zone

Snapshot of numerical simulation

65 4 3 o o 42 s 456
Lol 49"

P
s 3 NN _
a4 i —
iy 816 603 465 56 2
7 : Vi)
43 e N i 43
@ 7 & @ Through anomaly
41° y . a1
40° - 40"
39" . > 39"
38" : — 38
ar : 37
6 5 4 3 2 00 1 2 3 4 5 6
amplitude s16 603 465 as 8 2
v [kmis]

Sens-Schonfelder et al., J. Geophys. Res., 114, B07309, 2009
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Applications of Radiative Transfer

Applications at the global scale

Multiple scattering of Rayleigh

Scattering in the lower mantle
waves T

Texture

/'4‘--=..~\\ | Muctaton Spectum
XN LSS Spatial Extension
SN
Vaee s\
IO\ v
£

g N
o

Scattering

Point
AFl (Ag=147.55° , §p=41.25%)

Logyo MS Vel. [(nm/s)?]

5000 10000 15000 20000 25000 30000
Lapse Time [s]

Sato and Nishino, J. Geophys. Res., 107, Margerin and Nolet, J. Geophys. Res.,
2343, 2001 108, 2514, 2003
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Applications of Radiative Transfer

Application to source studies

The Kursk Explosion

Comparison between observed
and “theoretical” explosion

Elevation (m)
[J1a00
Figure 3: a) b) o)

10 15
Explosion
ARDS - Explosion
pm- 0 1 bubble pulse i 3
10 g 0.72:0. ms/”‘“""E pulse

ARCa
pm 0
4 Firstefloction
10 o the sea surface
o 5 10520 6 05 _i 15 0 o05_1 15 z
sec. sec sec
W0E 35 E w0 E
of the Kursk's disaster recorded on ARCESS b) )
Coda Lg "5 Explosion

First

oo bubble

uise

Reverbation 09 bollon P

sec.

inside the sea
1y 0

First refleCtion
on the sea surface

) 05 1 15
sec.

Sebe et al., Geophys. Res. Lett.,
32, L14308, 2005
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Applications of Radiative Transfer

More radiative transfer

Asymptotic solution of Bethe-Salpeter equation

Wigner distribution of two Green functions:
F(x,r;t,7)=(G(x+r/2,t+7/2)G(x —r/2,t —7/2)")
Fourier transform over 7:

C(x,r t,w) = /r(x, rit,7)e “Tdw

Asymptotic result t — co

efwt/Q,'

3 Im (G(r,w))

C(x,r t,w) ~ W
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Applications of Radiative Transfer

Consequence 1: Equipartition

Full-Space Elastic Green Function

Spectral domain:

A

ImG,-J-(k,w) ~ ((5,J = /2,'/2]')(5((,«)2 = V52k2) == /2,‘/%‘(5(0.)2 = V3k2)
Total Energy:

Trace [Im Gy (0, w)] = Trace [ / / / Imé,-j(k,w)dﬂ

~ Shear + Long

2 2
w w
~2-5 +
Ve vy
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Applications of Radiative Transfer

Application of Equipartition to Site Effect Studies

VeIZf'Z x:del Energy partition in the coda
a1 = 300m/s 4
B1 = 150m/s o
p1 = 2200kg/m?3 12F
hy = 11m 1ok
a2 = 900m/s ’
B> =500m/s 08F
p2 = 2200kg,/m3 LI
h3 = 50m ’
a3 = 3100m/s 04f
B3 = 1600 m/s 0al
p3 = 2700kg/m?3
Qoo = 5400m/s 0.0t
Boo = 3000m/s 0
Poo = 2700kg/m3 Frequency (Hz)

Margerin et al., Geophys. J. Int., 177, 571-585, 2009
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Applications of Radiative Transfer

Consequence 2: Green function reconstruction

Correlation of Coda waves

Temporary experiment in
Alaska

-150 -145 -140

© Earhquake
4 Station

R mp——

-160 -155 -150 145 -140

Time 5)

Time (5)

Paul et al., J. Geophys. Res., 110, B08302, 2005

L. Margerin Radiative Transfer of Seismic Waves



Applications of Radiative Transfer

Beyond radiative transfer: Weak localization

Ultrasound propagation in sand Interference of reciprocal
paths

Configuration 1
Ballistic 20

SR
waves S
30 D
A
Diffuse \40 c
halo
T 50 B
8
H
g
£ &
£ Configuration 2
£ 7
SR
Weak 80 N
Localization

%0

100

110

-60 -40 -20 0 20 40 60
Distance(rmm)

Courtesy A. Derode, L.O.A.
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