Radiative Transfer of Seismic Waves

L. Margerin

CEREGE, CNRS, Aix en Provence, France

Atelier sur les ondes élastiques, Col de Porte, 13 janvier 2009

En collaboration avec: N. Le Bihan, M. Campillo, E. Larose, G. Nolet, C. Sens-Schönfelder, N. Shapiro, B. van Tiggelen, ···

- A 3 N

Content

2 Solutions of the Radiative Transfer Equation

3 Applications of Radiative Transfer

Radiative Transfer in Seismology: Why?

Observations

- Duration of signal ≫ travel time of ballistic waves
- Rapid attenuation of direct waves
- "Cigar"-shaped envelope

• Pronounced Coda

Role of Scattering

Crustal earthquake in the Pyrenees

What is Radiative Transfer?

Definition

Radiative Transfer is a theory aimed at predicting the spatio-temporal distribution of energy in a scattering medium

The physical concepts of Radiative Transfer

- Local Energy Balance
- Angularly resolved energy flux: Specific intensity
- Scattering strength: mean free path

▲ 同 ▶ → 三 ▶

Some references in seismology

- Introduced by Wu (1985) and developed by Aki, Zeng, Sato
- Monte Carlo simulations: Gusev and Abubakirov, Hoshiba
- Sato and Fehler (Wave propagation and scattering in the heterogeneous Earth, Academic Press, 1998)
- Dmowska, Sato and Fehler, Eds, Vol. 50 of Advances in Geophysics, Academic Press, 2008
- IASPEI Task group: scattering and heterogeneity in the earth: http://www.scat.geophys.tohoku.ac.jp/index.html

Content

2 Solutions of the Radiative Transfer Equation

3 Applications of Radiative Transfer

- ● ● ●

Introduction to Radiative Transfer

Solutions of the Radiative Transfer Equation Applications of Radiative Transfer

The specific intensity

Angularly-resolved energy flux through a surface

Definition

$$\begin{split} \mathcal{I}(\omega,t,\mathbf{r},\hat{\mathbf{k}}) \times dS \times \cos(\theta) \times dt \times \\ d\omega &= \text{Amount of energy within} \\ \text{the frequency band } [\omega,\omega+d\omega] \\ \text{flowing through } dS \text{ around} \\ \text{direction } \hat{\mathbf{k}} \text{ during time } dt \end{split}$$

Relation to the wavefield

Wigner-Ville Spectrum

Consider a time-dependent field $\psi(t)$:

$$W_\psi(t,\omega) = \int\limits_{-\infty}^{+\infty} \langle \psi(t- au/2)\psi(t+ au/2)^*
angle \, e^{-i\omega au} d au$$

- $\langle \cdot \rangle$: Ensemble Average
- Separation of Time Scales
- W_{ψ} : Instantaneous Energy Spectrum

・ロト ・同ト ・ヨト ・ヨト

Wave content of the specific intensity

Angular Energy Spectrum

Spatial Wigner-Ville

$$egin{aligned} \mathcal{W}_\psi(\mathbf{x},\mathbf{k}) &= \ & \int \int \int \langle \psi(\mathbf{x}-\mathbf{r}/2)\psi(\mathbf{x}+\mathbf{r}/2)^*
angle \, e^{i\mathbf{k}\cdot\mathbf{r}} d^3r \end{aligned}$$

- Slowly-modulated wave packet
- Specific intensity contains information on the correlation properties of the wavefield

The Equation of Radiative Transfer

Scalar Case

$$\begin{pmatrix} \frac{1}{c} \frac{\partial}{\partial t} + \hat{\mathbf{k}} \cdot \nabla_{\mathbf{x}} \end{pmatrix} \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}) = \\ - \left(\frac{1}{l^{s}} + \frac{1}{l^{a}} \right) \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}) + \frac{1}{l^{s}} \oint p(\hat{\mathbf{k}}, \hat{\mathbf{k}}') \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}') d^{2} \hat{k}'$$

I^s: scattering mean free path*I^a*: absorption length

c: wave speed $p(\hat{\mathbf{k}}, \hat{\mathbf{k}}')$: scattering anisotropy

$$\delta I = I_{out} - I_{in}$$

$$I_{out}$$

$$Cdt$$

$$I_{out}$$

$$Cdt$$

$$Radiative Transfer of Seismic Waves$$

Assumptions in radiative transfer

Averaging the products of 2 Green functions

Example of scattering path

Visit the same scatterers

From Akkermans & Montambaux (2005)

The case of vector waves

The correlation tensor

$$\mathsf{\Gamma}_{ij}(\mathbf{x},\mathbf{k}) = \iiint \langle \psi_i(\mathbf{x}-\mathbf{r}/2)\psi_j(\mathbf{x}+\mathbf{r}/2)^* \rangle \, e^{i\mathbf{k}\cdot\mathbf{r}} d^3r$$

Rotate from the frame $(\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2, \hat{\mathbf{x}}_3)$ onto the frame $(\hat{\mathbf{k}}_1 = \hat{\mathbf{k}}, \hat{\mathbf{k}}_2, \hat{\mathbf{k}}_3)$:

$$\Gamma(\mathbf{x},\mathbf{k}) = \begin{pmatrix} \Gamma_{\hat{\mathbf{k}}_1\hat{\mathbf{k}}_1} & \Gamma_{\hat{\mathbf{k}}_1\hat{\mathbf{k}}_2} & \Gamma_{\hat{\mathbf{k}}_1\hat{\mathbf{k}}_3} \\ \Gamma_{\hat{\mathbf{k}}_2\hat{\mathbf{k}}_1} & \Gamma_{\hat{\mathbf{k}}_2\hat{\mathbf{k}}_2} & \Gamma_{\hat{\mathbf{k}}_2\hat{\mathbf{k}}_3} \\ \Gamma_{\hat{\mathbf{k}}_3\hat{\mathbf{k}}_1} & \Gamma_{\hat{\mathbf{k}}_3\hat{\mathbf{k}}_2} & \Gamma_{\hat{\mathbf{k}}_3\hat{\mathbf{k}}_3} \end{pmatrix}$$

Interpretation

 $\begin{array}{l} \label{eq:relation} {\sf F}_{\hat{k}_1\hat{k}_1}\colon {\it P}\text{-wave intensity} \\ {\sf F}_{\hat{k}_2\hat{k}_2},\; {\sf F}_{\hat{k}_3\hat{k}_3}\colon {\it S}\text{-wave intensity along } \hat{k}_2,\; \hat{k}_3 \\ {\sf F}_{\hat{k}_2\hat{k}_3},\; {\sf F}_{\hat{k}_3\hat{k}_2}\colon {\rm Stokes-like \ parameters} \to {\sf polarization} \\ {\sf Remaining \ terms}\colon {\sf correlation \ between \ P \ and \ S \ waves} \end{array}$

The equation of radiative transfer for elastic waves

$$\begin{pmatrix} \mathbf{c}^{-1} \frac{\partial}{\partial t} + \hat{\mathbf{k}} \cdot \nabla_{\mathbf{x}} \end{pmatrix} \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}) = - \left(\mathbf{I}^{-1} + \mathbf{I}^{\mathbf{a}-1} \right) \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}) + \mathbf{I}^{-1} \int \mathbf{p}(\hat{\mathbf{k}}, \hat{\mathbf{k}}') \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}') d^{2} \hat{k}'$$

$$= \text{Diag}(I_{\mathbf{x}}, I_{\mathbf{x}}, I_{\mathbf{x}}, I_{\mathbf{x}}) = \mathbf{C} = \text{Diag}(Y_{\mathbf{x}}, Y_{\mathbf{x}}, Y_{\mathbf{x}},$$

$$\mathbf{I} = \mathsf{Diag}(I_p, I_s, I_s, I_s, I_s)$$
$$\mathbf{I}^{\mathsf{a}} = \mathsf{Diag}(I_p^{\mathsf{a}}, I_s^{\mathsf{a}}, I_s^{\mathsf{a}}, I_s^{\mathsf{a}}, I_s^{\mathsf{a}})$$

.

$$\mathbf{c} = \mathsf{Diag}(v_p, v_s, v_s, v_s, v_s)$$
$$\mathbf{\mathcal{I}} = (I_p, I_x, I_y, U, V)$$

Interpretation of U and V Linear +45 Linear -45 Circular Left Circular Right y y x y y y y x y y y y

Content

2 Solutions of the Radiative Transfer Equation

3 Applications of Radiative Transfer

- ● ● ●

Numerical Tests

Models of random media

- 2-D Gaussian, exponential media
- Finite-Difference calculations
- P wave source
- Ensemble average
- Elastic R.T.E.
- $\mathbf{p}(\mathbf{\hat{k}}, \mathbf{\hat{k}}')$ from Born approx.
- Monte-Carlo simulations

Przybilla et al., J. Geophys. Res, 111, B04305, 2006

Comparison between RT and FD simulations

- Left: $t^s = 11.4s$, weak anisotropy, weak scattering
- Middle: $t^s = 0.5s$
- Right: t^s = 0.1s, strong anisotropy, strong scattering
- Excellent agreement even for strong forward scattering
- Uniform energy distribution at long time

▲ 同 ▶ ▲ 目

Przybilla et al., J. Geophys. Res, 111, B04305, 2006

Comparison between RT and FD simulations

- Excellent prediction of energy partition on radial and transverse components
- Equipartition at large time
- Energy ratios stabilize:

 $\frac{E_s}{E_p} = \left(\frac{v_p}{v_s}\right)^2$

L. Margerin Radiative Transfer of Seismic Waves

Content

2 Solutions of the Radiative Transfer Equation

- ● ● ●

Imaging of volcanic heterogeneity

Experiment at Osama Volcano (Japan)

- 5 Dynamite shots
- Vertical sensors 2Hz
- Station spacing: 50-150m
- Data normalized with late coda
- Shot 3 in the 8-16 Hz frequency band

Courtesy of M. Yamamoto

Spatial Distribution of Energy

- Observe the two slopes
- Shear waves are mode converted
- Spatial homogenization of energy at late time

Role of the scattering parameters

- Reference: $v^p = 2.7 \text{km/s}, v^p / v^s = \sqrt{3}, l^{pp} = 3 \text{ km}, l^{pp} / l^{ps} = 2, l^{pp} / l^{ss} = 3$
- Smaller I^{ps} : $I^{pp}/I^{ps} = 4$
- Smaller I^{ss} : $I^{pp}/I^{ss} = 6$
- Courtesy of M. Yamamoto

- 3-D elastic radiative transfer
- Isotropic scattering
- Explosion: isotropic *P* source
- Reciprocity: $I^{sp} = 2 \left(\frac{v^{p}}{v^{s}}\right)^{2} I^{ps}$
- Vary the ratios ${\it I^{pp}}/{\it I^{ps}}$ and ${\it I^{pp}}/{\it I^{ss}}$

Constraint on medium heterogeneity

Impressive agreement!

Yamamoto and Sato, to appear in J.G.R.

Inversion results

- v^p = 2.7 km/s
- *I^{pp}* = 3.8 km, *I^{pp}* = 2.4*I^{ps}*, *I^{pp}* = 3*I^{ss}*
- Absorption: $Q_i = 100$
- Extremely strong scattering: $l^p \approx l^s \approx 1 \text{km}$
- Coupling parameters: rich information on the nature of heterogeneity

Modeling of Lg blockage through the Pyrenees

Wavepaths through the Pyrenees

Extinction of Lg waves

- Blockage in a localized zone
- Not explained by Moho jump or faults
- Monte Carlo simulations of RT
- 3-D anistropic scattering and mode conversion
- Depth varying velocity and scattering properties

A A B

Undisturbed zone

Through anomaly

< 4 P > < E

-

Sens-Schönfelder et al., J. Geophys. Res., 114, B07309, 2009

Applications at the global scale

Scattering in the lower mantle

Margerin and Nolet, J. Geophys. Res., 108, 2514, 2003

Application to source studies

The Kursk Explosion

Sèbe et al., Geophys. Res. Lett., 32, L14308, 2005

Comparison between observed and "theoretical" explosion

Image: A = A

More radiative transfer

Asymptotic solution of Bethe-Salpeter equation

Wigner distribution of two Green functions:

$$\mathsf{F}(\mathbf{x},\mathbf{r};t,\tau) = \langle G(\mathbf{x}+\mathbf{r}/2,t+\tau/2)G(\mathbf{x}-\mathbf{r}/2,t-\tau/2)^* \rangle$$

Fourier transform over τ :

$$C(\mathbf{x},\mathbf{r};t,\omega) = \int \Gamma(\mathbf{x},\mathbf{r};t,\tau) e^{-i\omega\tau} d\omega$$

Asymptotic result $t
ightarrow \infty$

$$C(\mathbf{x},\mathbf{r};t,\omega)\sim rac{\mathrm{e}^{-\omega t/Q_i}}{(Dt)^{3/2}}\,\mathrm{Im}\,\left\langle G(\mathbf{r},\omega)
ight
angle$$

Consequence 1: Equipartition

Full-Space Elastic Green Function

Spectral domain:

$$\mathrm{Im}\,\hat{G}_{ij}(\mathbf{k},\omega)\sim(\delta_{ij}-\hat{k}_i\hat{k}_j)\delta(\omega^2-v_s^2k^2)+\hat{k}_i\hat{k}_j\delta(\omega^2-v_p^2k^2)$$

Total Energy:

Trace
$$[\operatorname{Im} G_{ik}(0,\omega)] = \operatorname{Trace} \left[\iiint \operatorname{Im} \hat{G}_{ij}(\mathbf{k},\omega) d^3 k \right]$$

~ Shear + Long
~ $2 \frac{\widehat{\omega^2}}{v_s^3} + \frac{\widehat{\omega^2}}{v_p^3}$

Application of Equipartition to Site Effect Studies

Margerin et al., Geophys. J. Int., 177, 571-585, 2009

Consequence 2: Green function reconstruction

Paul et al., J. Geophys. Res., 110, B08302, 2005

< □ > < 同 >

ヨート

Beyond radiative transfer: Weak localization

Ultrasound propagation in sand

Courtesy A. Derode, L.O.A.

Interference of reciprocal