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At Manitoba, we use ultrasound to study wave phenomena in mesostructured materials, 
and to probe the physical properties of mesoscopic materialsand  to probe the physical properties of mesoscopic materials.

- ballistic and diffusive wave transport in random media
- field fluctuation spectroscopy (DSS, DAWS…)

wave transport & focusing in phononic crystals- wave transport & focusing in phononic crystals
- ultrasound in complex materials (e.g., soft matter, foods)
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Outline:   Localization of Elastic Waves
For a recent overview, see
Physics Today August 2009

I.  Introduction: 
What is Anderson Localization?
Our samples & their basic   Experiment

  Self-consistent Theory
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III Transverse confinement of ultrasonic waves
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III.  Transverse confinement of ultrasonic waves
due to localization 

(“3D transverse localization”)
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IV.  Statistical approach to localization 
– non-Rayleigh statistics, variance, multifractality.  
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V.  Conclusions Hu et al., Nature Physics, 4, 945 
(Dec, 2008)    arXiv:0805.1502



Introduction:  Anderson localization of electrons (quantum particles)
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r r rV(r) varies randomly 
in space

P.W. Anderson
1958

E = Ec 

extended state

(~50 years ago) E < Ec 

"Localization [..], very few believed it at the time, and even fewer saw its 
importance, among those who failed to fully understand it at first was certainly its 
author. It has yet to receive adequate mathematical treatment, and one has to 
resort to the indignity of numerical simulations to settle even the simplest questions resort to the indignity of numerical simulations to settle even the simplest questions 
about it."
P.W. Anderson, Nobel Lecture, 1977

Experiments:Many theoretical breakthroughs: Experiments:
Hampered by interactions and 
finite temperatures

Many theoretical breakthroughs:
e.g.  Scaling theory (1979)   (~30 years ago)

Self consistent theory (1980)



Introduction:  Anderson localization of electrons (quantum particles)
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Localization of classical waves (sound or light) 
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Previous experiments with light in 3D:
Exponential scaling of the average transmission (for monochromatic waves)Exponential scaling of the average transmission (for monochromatic waves)
with thickness L.  [Wiersma et al., Nature 390, 671 (1997)] 

Diffuse regime: Localized regime
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• Difficult to distinguish from effects of absorption ( exp[-L/ℓa])



Previous experiments with microwaves in quasi-1D:
Enhanced fluctuations of total transmissionEnhanced fluctuations of total transmission.  
[Chabanov et al., Nature 404, 850 (2000)] 
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Diffuse regime: Localized regime
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• Chabanov et al. proposed that this criterion for localization is independent of 
absorption, but their experiments were limited to quasi-1-dimensional samples.



More recent experiments with light in 3D:
Time-dependent transmission through thick samples of TiO particlesTime-dependent transmission through thick samples of TiO2 particles 
[Störzer et al., PRL 96, 063904 (2006)] 

Non-exponential tail at long 
times: 
interpreted as a slowing down p g
of diffusion with propagation 
time due to localization.

Current status (~50 years after Anderson’s discovery):  
• The subject is more alive than ever! j

• Growing activity in optics, microwaves, acoustics, seismic waves, and 
atomic matter waves.



Question: Can we convincing observe the localization of ultrasound 
due to disorder in 3D, and, if so, can we learn something new?  
NB  Scaling theory  Only in 3D is there a real transition from extended to 
localized modes (i.e., a mobility edge) 

Weak disorder (kℓ >> 1): 
Diffuse propagation 
DB = ⅓ vE ℓB* (neglect

Strong disorder (kℓ  1): 
Anderson localization 
(interference is important!)DB  ⅓ vE ℓB   (neglect 

interference) 
(interference is important!) 

Energy density spreads Energy remains

e.g., After a short pulse of ultrasound is incident on the medium…
Localization length 

gy y p
diffusively 

from the source 

Energy remains 
localized 

in the vicinity of the source



Our samples:  “Mesoglasses” fabricated by 
sintering aluminum beads together to form a 
porous solid 3D elastic networkporous, solid 3D elastic network.  

Aluminum volume fraction:     = 0.55
Monodisperse beads:Monodisperse beads:   

radius,  abead = 2.05 mm
Sample width >> thickness (L: 8 to 23 mm)

Experiment: Pulsed ultrasonic transmission 
measurements (waterproofed samples, in a water 

)tank)

Frequency range:  0.1 to 3 MHz  (                ) 6 1a

planar
transducer:
(far field)

hydrophone

(xi,yi)

incident sound
waves: quasi-
planar sample



Coherent transport in disordered Al mesostructures:

Ballistic transport: Average the transmitted field toBallistic transport: Average the transmitted field to 
recover the weak coherent pulse and measure :

• phase velocity: p kv

• group velocity:
• scattering mean free path, ℓ :

Very strong 
scattering in the 

intermediate 
 exp  0 /LI I

 d dg kv

Amplitude transmission coefficient: 
Bandgaps arise from weakly coupled resonances 
of the aluminum beads (Turner & Weaver, 1998)

frequency regime 
(0.2 – 3 MHz) :

1  kℓ  2 5of the aluminum beads (Turner & Weaver, 1998) 1   kℓ  2.5
(outside the 
bandgaps) 
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II. Time-dependent transmission, I(t).
• Measure multiply scattered field in many 

planar
transducer

incident sound
(quasi planar)

hydrophone

p y y
independent speckles by scanning the 
hydrophone.

• Digitally filter the field to limit bandwidth

(quasi-planar)
sample

0.2 SPECKLE 1• Digitally filter the field to limit bandwidth 
(~5% usually) 

• Determine I(t) by averaging the squared 
t itt d l l (N li
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transmitted pulse envelopes. (Normalize 
by the peak of the input pulse)

• First compare with the diffusion model, 
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using realistic boundary conditions 
(e.g. see Page et al., Phys. Rev. E   52, 3106 
(1995) for ultrasonic waves)
[z - extrapolation length; z - penetration 1E-3
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[z0 - extrapolation length;   z - penetration 
depth;  a - absorption time]

• For elastic media, the diffusion 
coefficient D = ⅓ v ℓ* is the energy 1E-6
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coefficient DB = ⅓ vE ℓ   is the energy-
density weighted average of longitudinal 
and transverse waves.   
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Time-dependent transmission at low frequencies:
(below the lowest band gap)

Good fit to the predictions of the diffusion approximation for a plane 
wave source   measure D. (Absorption is too small to measure.)

f = 0.2 MHz:

I(t) decays 0.01
Experimenty exponentially at 

long times
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0D BL z D

1E-6
l* = 2.5 mm
R = 0.85
L = 14.5 mm
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I(t) at higher frequencies (e.g. 2.4 MHz)

Find non-exponential decay of I(t) at long times (t >> D )  Looks

 

Find non exponential decay of I(t) at long times (t  D )  Looks 
like a diffusion process with D(t) decreasing with propagation time.
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Suggests that sound may be localized



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with the recently improved self-

i t t th f l li ticonsistent theory of localization [Skipetrov & van Tiggelen (2006)] 

Basic idea:
The presence of  loops increases the return 
probability as compared to ‘normal’ diffusion

Diffusion slows down

Diffusion constant should be renormalized

Generalization to Open Media:

Loops are less probable near the boundaries

Slowing down of diffusion is spatially heterogeneous

Diffusion constant becomes position-dependent



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with the recently improved self-

i t t th f l li ti

Mathematical formulation:

consistent theory of localization [Skipetrov & van Tiggelen (2006)] 

Diffusion equation
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Self consistent equation for the diffusion coefficient

( G(r,r,) – Intensity Green’s function)
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( () – density of states )
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Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with predictions of the self 

i t t th f l li ti f D( )consistent theory of localization for D(r,) [Skipetrov & van Tiggelen (2006)] 

Input parameters:
  Experiment
  Self-consistent Theory

Diff i Th

 

L = 14.5 mm (sample thickness)
ℓ = 0.6 mm (scattering mean free     

path)
R = 0.82 (internal reflection coeff.)
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ℓB* = 2.0 mm
L/ = 1.0 
 = 11 s z0 = ℓB* ⅔ (1+R)/(1-R) = 6.7 ℓB* 

vp = 5.0 km/s (phase velocity)
kℓ = 1.82

Fitted parameters:
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Fitted parameters:
ℓB* (“bare” transport mean free path)
L/ ( is the localization length)
D or DB (bare diffusion coefficient)
 (absorption time)

1E-8

N
or

m
al

iz

a (absorption time)

0 100 200 300 400

1E-9

Time (s)

Excellent fit at all propagation times.



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with predictions of the self 

i t t th f l li ti f D( )

  Experiment
  Self-consistent Theory

Diff i Th

 Localization length :

consistent theory of localization for D(r,) [Skipetrov & van Tiggelen (2006)] 
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Diffuse regime:
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 < 0 ,     kℓ > (kℓ)c

Excellent fit at all propagation times with  > 0 (L >  > L/4) 
 Convincing evidence for the localization of sound 



III. Transverse confinement (“transverse localization in 3D”)

Experiment (displaced point source technique):Experiment (displaced point source technique):

• Point source (focusing 
transducer + small aperture) 

focusing 
transducer

hydrophone

sample 
cross-section

• Point detector, placed a 
transverse distance  away

• Scan x y position of the

hydrophone
(on-axis 
configuration)


• Scan x-y position of the 
sample to determine I(,t). (off-axis 

configuration)cone-shaped aperture

The ratio I( t)/I(0 t) probes the transverse growth (dynamic spreading)The ratio I(,t)/I(0,t) probes the transverse growth (dynamic spreading) 
of the intensity profile.  
• Diffuse regime – measure the effective width of the “diffuse halo”, which 

f fprovides a method of measuring D independent of boundary conditions and 
absorption. [Page et al., Phys. Rev. E 52, 3106 (1995)]
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Diffuse regime –the effective width of the “diffuse halo” grows linearly in time

Data (from 1995) on a suspension of glass beads in water (kℓ 7)Data (from 1995) on a suspension of glass beads in water (kℓ 7)
[Page et al., Phys. Rev. E   52, 3106 (1995)] 
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Question: What happens to I(,t) & w(t) in the localization regime?   
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Dynamic transverse width at 
2.4 MHz: 
Localization dramatically 
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Quantitative analysis of the dynamic transverse width, w(t):
- Fit the data using the new self consistent theory that allows for the 

iti d d f th li d diff i ffi i t i 3Dposition dependence of the renormalized diffusion coefficient in 3D.  
• Excellent fit for all four  with:

ℓB* = 2.0 mmB
L/ = 1.0 
D = 17 s 

(a cancels in ratio) 
150

200

• Fit is more sensitive to  than 
plane wave I(t)

• Again find  > 0  classical
100
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• Again, find  > 0  classical 
wave localization is 
convincingly demonstrated in 
this 3D “phononic” mesoglass
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this 3D phononic  mesoglass.

• First direct measurement and 
theory for the transverse 
t t f l li d i
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t (s) structure of localized waves in 
3D.   Find w  12-14 mm  
for this sample
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3D Transverse Localization: this animation (prepared by Sergey 
Skipetrov) shows the “freezing” of the transverse profile at long times 
( t ti f I( t)/I( 0) f t > t 100 i thi )(saturation of I(,t)/I(,0) occurs for t > tloc  100 s in this case.)

 Theory
 Experiment Experiment

John Page
Sticky Note
This animation can be viewed at http://www.physics.umanitoba.ca/~jhpage/HTML/localization/localization2.html



Decrease of I(,t) with transverse distance  is not Gaussian 
 Near the mobility edge (kℓ /(kℓ )c = 0.99  for this sample at this 
f ) i h t ith t di l tfrequency), w varies somewhat with transverse displacement .
The self-consistent theory (solid curves) captures the experimentally observed 
dependence of w(t) on  very well. p ( )  y
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Question:  What determines the magnitude of the dynamic transverse 
width w(t)? 

• For thick samples, w becomes independent of  .

• Behaviour at long times:  SC theory predictions for the saturated width 
when L >>  : 2when L >>  :

[Cherroret, Skipetrov and van Tiggelen, aiXiv:0810.0767v1]
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For localized waves, 
w depends on both L and 



The saturation of w(t) at long times is predicted even at the mobility 
edge   [Cherroret, Skipetrov and van Tiggelen, arXiv:0810.0767v1].

Numerical calculations using the dynamic self-consistent theory:

At the mobility edge: 
(t ) L

In the diffuse regime: 
w2(t) = 4D [1 (kl )-2 ]t w(t)  Lw2(t) = 4D [1-(kl ) 2 ]t

( L = 100 l ) 

D i thDeep in the 
localization regime:

2( )w t

   

( )
2 1 /L L



What happens when we vary the frequency?  
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At 0.7 and 1.0 MHz, w 2(t) does not saturate  above the mobility edge. 
(at 0.7 MHz, the time dependence is almost linear)

Should be feasible to measure  as the mobility edge is approached



What happens when we vary the frequency?
Plot on log scales to show the time dependence  g p
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Near the mobility edge we see
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Agrees ith predictionsNear the mobility edge, we see
w 2(t)   t 2/3 for t < D &
w 2(t)   t 1/2 for a limited range of t > D

Agrees with predictions 
of the self-consistent 
theory.  



Summary:  Transverse confinement   (3D transverse localization)
• The dynamic transverse width w 2(t) has completely different properties for 

ffdiffuse and localized modes

Diffuse: w 2(t)  t and increases without bound.

Localized: w 2(t) saturates at long timesLocalized: w 2(t) saturates at long times.  
At the mobility edge:         w(t)  L 
Deep in the localization regime:       2( ) 2 1 /w t L L

• w 2(t) is independent of absorption  its measurement (for any kind of wave) 
provides a valuable method for assessing whether or not the waves are 
localized.  (No risk of confusing absorption with localization.)  

• w 2(t) can be used to measure 
the localization length .



IV.  Statistical approach to the localization of sound:

Diffuse ultrasound
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Large fluctuations in the transmitted intensity
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Large fluctuations in the transmitted intensity 
are characteristic of localized waves.

Signatures of these fluctuations 
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Transmitted intensity distributions for our mesoglass:
Measure the intensity I at each point in the near field speckle pattern when the 

(a) Data at 0.20 MHz

y p p p
sample is illuminated on the opposite side with a broad beam.  When I is normalized 
by its average value to get  Î = I / I , its distribution is universal. 

100(a)  Data at 0.20 MHz

Rayleigh distribution: 
(random wave fields described 
b i l G i t ti ti ) 2

10-1

100
  Experiment,  f = 0.20 MHz
  NvR theory, g' = 11.4
  Rayleigh distribution

by circular Gaussian statistics)

    ˆ ˆexpP I I
10-3

10-2

P
( I )

Leading order correction to 
Rayleigh statistics due to 
interference (no absorption) 
[Nieuwenhuizen & van Rossum

10-5

10-4

[Nieuwenhuizen & van Rossum, 
PRL 74, 2674 (1995)]
(g = dimensionless conductance):

0 5 10 15
10-6

I

 
Î

      
      

21ˆ ˆ ˆ ˆexp 1 4 2
3

P
g

I I I I Find g = 11.4 >> 1
 modes are extended



(b) Near 2 4 MHz (upper part of intermediate frequency regime) find very

Transmitted intensity distributions for our mesoglass:
(b) Near 2.4 MHz (upper part of intermediate frequency regime), find very 
large departures from Rayleigh Statistics

Fit the entire distribution to predictions by van Rossum and Nieuewenhuizen 
[R M d Ph 71 313][Rev. Mod. Phys. 71, 313]
for a slab geometry in 3D 
(red curve).  
Remarkable agreement 10-1

100
  Experiment,  f = 2.4 MHz
  NvR theory, g' = 0.80
stretched exponential g' = 0 80Remarkable agreement 

with experiment.

The tail of intensity 
di t ib ti b

10-2

10   stretched exponential, g   0.80
  Rayleigh distribution

distribution obeys a 
stretched exponential 
distribution 

   ˆ ˆ
10-4

10-3

(g is the effective 
dimensionless conductance.)

   ˆ ˆ~ exp 2P gI I

10-6

10-5

Find g = 0.80 < 1,  
indicating  localization.

0 10 20 30 40 50
10

 IÎ



Variance of the transmitted intensity – another way to measure the 
dimensionless conductance g:

Chabanov et al. [Nature 404, 850 (2000)] have proposed that localization is 
achieved when the variance of the normalized total transmitted intensity ,

satisfies
 2

2 2T
T̂ T T=

whether absorption is present or not. This corresponds to the localization 


  

2
2 2ˆvar( )

3 3

T
T

gT

condition g  1.

But var( ) and var(Î) are related:  ˆˆvar( ) 2var( ) 1TIT̂

Then, the Chabanov-Genack localization criterion gives ˆvar( ) 7 3I

e g for our data at 2 4 MHz:e.g., for our data at 2.4 MHz:

Measure var(Î) = 2.74  0.09 

E ll t t ith 0 80 0 08 d f P(Î)

   
  

4 0.77 0.4
ˆ3 var( ) 1

g
I

Excellent agreement with g = 0.80  0.08 measured from P(Î)

Additional evidence that the modes are localized above  2 MHz.



Multifractality (MF) of the wavefunction (with Sanli Faez, Ad Lagendijk):
[Faez et al., PRL 103, 155703 (2009) ]

Key idea: Large fluctuations  the moments of the wave function intensityKey idea:  Large fluctuations  the moments of the wave function intensity 

I(r) =  2(r)/   2(r)ddr

may depend anomalously on length scale at the Anderson transitionmay depend anomalously on length scale at the Anderson transition, 
exhibiting multifractal behaviour
(MF  each moment scales with a different power- law exponent).  

• Many theoretical predictions, but almost no experimental evidenceMany theoretical predictions, but almost no experimental evidence
Question:  Do the ultrasonic wavefunctions exhibit MF in our samples? 

Transmitted speckle patterns I(r) for a fixed point source (at x = y = 0).
E it i l f ti t h f

2.425 MHz2.375 MHz

Excite a single wave function at each frequency.
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Multifractality (MF):
Characterizing the length scale dependence:  15

L

0
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m
m

)

C a acte g t e e gt sca e depe de ce
 Vary system size L, or 
 Divide system into boxes of size b, 

and vary b with L fixed.  0

5

10

m
m

)

b

-15
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-5

y 
(m( < b < L,  L/b is the scaling length)

Generalized Inverse Participation Ratios (gIPR): -15
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15
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Generalized Inverse Participation Ratios (gIPR): 
The gIPR quantify the non-trivial  length scale 
dependence of the moments of the intensity. 
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15
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 
q

   
 

 
  
  

  
1 1

i

i

q
n nq d

q B
i i B

P I I dr r I(r) =  2(r)/   2(r)ddr (normalized intensity)
IBi is the integrated probability inside a box Bi

of linear size b
n = (L/b)d is the number of boxes.

  ( )qP L b   ( ) 1q d q    with

At criticality

 qP L b

MF behaviour:  is a continuous 
function of q (critical states). 

 ( ) 1 qq d q    with

normal dimension anomalous dimension



Multifractality (MF):
Generalized Inverse Participation Ratios (gIPR): 15

L = Lg

Ge e a ed e se a t c pat o at os (g )
Find the “typically averaged” gIPR by box-sampling the 
wavefunctions (many frequencies) near the surface 
(d sampling = 2, but sample is 3D) for a single realization 0
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m
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p g
of disorder.
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Representative results at f = 2.40 MHz: -15 -10 -5 0 5 10 15
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Extended states:
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Extended states:
(q) = d(q-1)  [i.e., q = 0]

Near criticality:
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q
 q = 2
 q = 3lo

g (q), q, both continuous 
functions of q (MF)

Deep in the localization
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4

 log (b/Lg)

Deep in the localization 
regime: (q) = 0



Multifractality (MF):
Generalized Inverse Participation Ratios (gIPR): 15

L = Lg

Ge e a ed e se a t c pat o at os (g )
Find the “typically averaged” gIPR by box-sampling the 
wavefunctions (many frequencies) near the surface 
(dsampling space = 2, but sample is 3D) for a single 0
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• Determine (q) 
from the slopes

-2
0
2

q
 q = 2
 q = 3lo

g from the slopes

• Subtract off the 
normal part of (q), 

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4
 log (b/Lg)

d(q-1), to determine  
q



Multifractality (MF):  the anomalous exponents (from the gIPR)
Anomalous exponents qAnomalous exponents q

-0.5

0.0

q

• The variation of q with q gives 
unambiguous evidence of MF 
for the localized ultrasonic wave

1 5
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Localized ultrasound

for the localized ultrasonic wave 
functions

• Our data are consistent with

-2 -1 0 1 2 3
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q

Localized ultrasound
Diffuse light

Our data are consistent with 
an exact symmetry relation 
predicted by Mirlin et al. 
(PRL 97, 046803, 2006) q

q = 1 – q

Additional evidence of wave function multifractality is given by 0 2 4 6 8 10 12 14
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Additional evidence of wave function multifractality is given by
Probability density function (PDF) 

- exhibits log normal behaviour

Singularity spectrum f() (related to(q) by a Legendre transform)
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Singularity spectrum f() (related to(q) by a Legendre transform) 
- peak is shifted from the Euclidean dimension d.  

See Faez et al., PRL 103, 155703 (2009) 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Statistics - Summary

• Large fluctuations in the transmitted intensity for 
localized modes:
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non-Rayleigh statistics
large variance, var(Î)
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• First experimental observations of wavefunction
multifractality near the Anderson transition:
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singularity spectrum, f() (peak > d)
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Conclusions

We have used ultrasonic experiments and predictions of the self-We have used ultrasonic experiments and predictions of the self
consistent theory of dynamics of localization to demonstrate the 
localization of elastic waves in a 3D disordered mesoglass.  

Localization signaturesLocalization signatures
 Time dependent transmitted intensity I(t) 
 non-exponential decay of I(t) at long times.  

 Transverse confinement  first direct 
measurements and theory for I(,t), showing how 
localization cuts off the transverse spreading of the 
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p g
multiple scattering halo.  

w 2(t) is independent of absorption and depends 
on the localization length  (and L)

15

20

25

10

15

20

y (mm) x (
mm)

 non-Rayleigh statistics and large variance of the 
transmitted intensity Î ; wavefunction multifractality. 

dimensionless conductance g = 0.8 < 1 (2.4 MHz)

Transverse confinement is a powerful new approach for guiding 
investigations of 3D Anderson localization for any type of wave.  

dimensionless conductance  g  0.8   1 (2.4 MHz)  


