Polarization, multiple scattering and the Berry phase

Vincent Rossetto
LPMMC Grenoble
Presentation overview

1. **Polarization**
 - Generalities
 - Green’s function

2. **Multiple scattering**
 - Single scattering
 - Born expansion
 - Dyson equation

3. **Berry phase**
 - Bringing the Berry phase to light
 - Geometry
 - Applications
Polarization

1. Polarization
 - Generalities
 - Green’s function

2. Multiple scattering
 - Single scattering
 - Born expansion
 - Dyson equation

3. Berry phase
 - Bringing the Berry phase to light
 - Geometry
 - Applications
Polarization
generalities

<table>
<thead>
<tr>
<th>Acoustic waves</th>
<th>Electromagnetic waves</th>
<th>Elastic waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 d.o.f.</td>
<td>2 d.o.f.</td>
<td>3 d.o.f.</td>
</tr>
<tr>
<td>no polarization</td>
<td>polarization</td>
<td>polarization</td>
</tr>
</tbody>
</table>

Polarization depends on *relative* phases and amplitudes

Linear
Circular
Elliptical
For the *field*: Jones representations

\[
\begin{pmatrix}
 E_x \\
 E_y \\
 E_z \\
\end{pmatrix}
\]

cartesian

For the *intensity*: Stokes representations

\[
\begin{pmatrix}
 I \\
 I_\perp \\
 Q \\
 U \\
 V \\
\end{pmatrix}
\]

with \(I = E^\dagger E \)

\(I_\perp = E^\dagger \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} E \)

\(\ldots \)
For the field: Jones representations

\[
\begin{pmatrix}
E_x \\
E_y \\
E_z
\end{pmatrix}
\]
cartesian

\[
\begin{pmatrix}
E_+
\\
E_-
\\
E_0
\end{pmatrix}
\]
circular

For the intensity: Stokes representations

\[
\begin{pmatrix}
I \\
I_\perp \\
Q \\
U \\
V
\end{pmatrix}
\]
with
\[
\begin{align*}
I &= E^\dagger E \\
I_\perp &= E^\dagger \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} E \\
\ldots
\end{align*}
\]
For the *field* : Jones representations

\[
\begin{pmatrix}
E_x \\
E_y \\
E_z
\end{pmatrix}
\quad \text{cartesian}
\]

\[
\begin{pmatrix}
E_+ \\
E_-
\end{pmatrix}
\quad \text{circular}
\]

For the *intensity* : Stokes representations

\[
\begin{pmatrix}
I \\
I_\perp \\
Q \\
U \\
V
\end{pmatrix}
\quad \text{with} \quad \begin{cases}
I = E^\dagger E \\
I_\perp = E^\dagger \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} E \\
\ldots
\end{cases}
\]
Polarization frames

\[
\begin{align*}
\begin{pmatrix}
E'_{x} \\
E'_{y} \\
E'_{z}
\end{pmatrix} &=
\begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
E_{x} \\
E_{y} \\
E_{z}
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
E'_{+} \\
E'_{-} \\
E'_{0}
\end{pmatrix} &=
\begin{pmatrix}
e^{-i\theta} & 0 & 0 \\
0 & e^{i\theta} & 0 \\
0 & 0 & e^{0}
\end{pmatrix}
\begin{pmatrix}
E_{+} \\
E_{-} \\
E_{0}
\end{pmatrix}
\end{align*}
\]
\[
\begin{pmatrix}
E'_x \\
E'_y \\
E'_z
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
E_x \\
E_y \\
E_z
\end{pmatrix}
\]

\[
\begin{pmatrix}
E'_+ \\
E'_- \\
E'_0
\end{pmatrix} =
\begin{pmatrix}
e^{-i\theta} & 0 & 0 \\
0 & e^{+i\theta} & 0 \\
0 & 0 & e^0
\end{pmatrix}
\begin{pmatrix}
E_+ \\
E_- \\
E_0
\end{pmatrix}
\]
Polarization frames

\[
\begin{pmatrix}
E'_{x} \\
E'_{y} \\
E'_{z}
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
E_x \\
E_y \\
E_z
\end{pmatrix}
\]

\[
\begin{pmatrix}
E'_{+} \\
E'_{-} \\
E'_{0}
\end{pmatrix} = \begin{pmatrix}
e^{-i\theta} & 0 & 0 \\
0 & e^{+i\theta} & 0 \\
0 & 0 & e^0
\end{pmatrix} \begin{pmatrix}
E_{+} \\
E_{-} \\
E_{0}
\end{pmatrix}
\]
$E(r, t, R)$

$E_s(r, t, RZ(\alpha)) = e^{-i\alpha} E_s(r, t, R)$

Reference frame

Mobile frames
$E(r, t, R)$

$E_s(r, t, RZ(\alpha)) = e^{-i\alpha} E_s(r, t, R)$
Green's function
in vacuum

\(\mathbf{G}_0 \) relates amplitudes
- at positions \(\mathbf{r} \) and \(\mathbf{r}' \)
- at times \(t \) and \(t' \)
- in frames \(\mathbf{R} \) and \(\mathbf{R}' \)

Euler angles
\[
\mathbf{R} = \mathbf{Z}(\phi)\mathbf{Y}(\theta)\mathbf{Z}(\psi)
\]
\[
\Delta(\mathbf{R}, \mathbf{R}') = \delta(\phi' - \phi)\delta(\cos \theta' - \cos \theta)
\]
\[
\mathbf{r}' - \mathbf{r} = \mathbf{R} \hat{\mathbf{z}}
\]

\[
\mathbf{G}_0(\mathbf{r}, \mathbf{r}', t, t', \mathbf{R}, \mathbf{R}') \big|_{ss'} = \delta_{ss'} \Delta(\mathbf{R}, \mathbf{R}') \Delta(\mathbf{R}, \mathbf{D}) e^{i(s'\psi' - s\psi)} \mathbf{g}_0(\mathbf{r}' - \mathbf{r}, t' - t)
\]
Green’s function in vacuum

G_0 relates amplitudes
- at positions r and r'
- at times t and t'
- in frames R and R'

Euler angles

$R = Z(\phi)Y(\theta)Z(\psi)$

$\Delta(R, R') = \delta(\phi' - \phi)\delta(\cos \theta' - \cos \theta)$

$r' - r = R \hat{D} \hat{z}$

$G_0(r, r', t, t', R, R')|_{ss'} = \delta_{ss'} \Delta(R, R') \Delta(R, D) e^{i(s'\psi' - s\psi)} g_0(r' - r, t' - t)$
Green’s function in vacuum

G_0 relates amplitudes
- at positions r and r'
- at times t and t'
- in frames R and R'

Euler angles

$$R = Z(\phi)Y(\theta)Z(\psi)$$

$$\Delta(R, R') = \delta(\phi' - \phi)\delta(\cos \theta' - \cos \theta)$$

$$r' - r = R \hat{D} \hat{Z}$$

$$G_0(r, r', t, t', R, R')_{ss'} =$$

$$\delta_{ss'} \Delta(R, R') \Delta(R, D) e^{i(s'\psi' - s\psi)} g_0(r' - r, t' - t)$$
Green’s function in vacuum

G_0 relates amplitudes
- at positions r and r'
- at times t and t'
- in frames R and R'

Euler angles

$$R = Z(\phi)Y(\theta)Z(\psi)$$

$$\Delta(R, R') = \delta(\phi' - \phi)\delta(\cos \theta' - \cos \theta)$$

$$r' - r = RD\hat{z}$$

$$G_0(r, r', t, t', R, R')|_{ss'} =$$

$$\delta_{ss'} \Delta(R, R') \Delta(R, D) e^{i(s'\psi' - s\psi)} g_0(r' - r, t' - t)$$
Green’s function in vacuum

\(G_0 \) relates amplitudes
- at positions \(\mathbf{r} \) and \(\mathbf{r}' \)
- at times \(t \) and \(t' \)
- in frames \(\mathbf{R} \) and \(\mathbf{R}' \)

Euler angles

\[
\mathbf{R} = \mathbf{Z}(\phi)\mathbf{Y}(\theta)\mathbf{Z}(\psi)
\]

\[
\Delta(\mathbf{R}, \mathbf{R}') = \delta(\phi' - \phi)\delta(\cos \theta' - \cos \theta)
\]

\[
\mathbf{r}' - \mathbf{r} = \mathbf{R} \mathbf{D} \hat{\mathbf{z}}
\]

\[
G_0(\mathbf{r}, \mathbf{r}', t, t', \mathbf{R}, \mathbf{R}')_{ss'} =
\]
\[
\delta_{ss'} \Delta(\mathbf{R}, \mathbf{R}') \Delta(\mathbf{R}, \mathbf{D}) e^{i(s'\psi' - s\psi)} g_0(\mathbf{r}' - \mathbf{r}, t' - t)
\]
Green’s function in Fourier domain

\[\tilde{G}_0(q, \omega, R, R') \bigg|_{ss'} = \delta_{ss'} \frac{\Delta(R, R')}{\left(\frac{\omega}{c} - \mathbf{q} \cdot \hat{z} \right)^2} e^{i(s'\psi' - s\psi)} \]

\[\int dR \int dR' \tilde{G}_0(q, \omega, R, R') = \frac{1}{\left(\frac{\omega}{c} \right)^2 - q^2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

⇒ Directivity is essential to represent polarized waves in mobile frames.
Green’s function
in Fourier domain

\[\tilde{G}_0(q, \omega, R, R')|_{ss'} = \delta_{ss'} \frac{\Delta(R, R')}{\left(\frac{\omega}{c} - q \cdot \hat{z}\right)^2} e^{i(s'\psi' - s\psi)} \]

\[\int dR \int dR' \tilde{G}_0(q, \omega, R, R') = \frac{1}{(\frac{\omega}{c})^2 - q^2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

⇒ Directivity is essential to represent polarized waves in mobile frames.
\[
\tilde{G}_0(q, \omega, R, R') |_{ss'} = \delta_{ss'} \frac{\Delta(R, R')}{(\frac{\omega}{c} - q \cdot \hat{R})^2} e^{i(s'\psi' - s\psi)}
\]

\[
\int dR \int dR' \tilde{G}_0(q, \omega, R, R') = \frac{1}{(\frac{\omega}{c})^2 - q^2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

⇒ Directivity is essential to represent polarized waves in mobile frames.
Absorption (dichroism)

\[\exp(-\kappa_s R) \]

Birefringence

\[\exp \left(-i \frac{\omega}{c_s} R \right) \]

Spin flip (for photons)

\[G_0 \bigg|_{s,-s} \neq 0 \]

Faraday effect (for photons)

\[q \rightarrow q - s V_B \]
Absorption (dichroism)

\[\exp \left(-\kappa_s R \right) \]

Birefringence

\[\exp \left(-i \frac{\omega}{c_s} R \right) \]

Spin flip (for photons)

\[G_0 \bigg|_{s,-s} \neq 0 \]

Faraday effect (for photons)

\[q \rightarrow q - s \sqrt{B} \]
Green's function and medium anisotropies

- Absorption (dichroism)
 \[\exp(-\kappa_s R) \]

- Birefringence
 \[\exp\left(-i\frac{\omega}{c_s} R\right) \]

- Spin flip (for photons)
 \[G_0|_{s,-s} \neq 0 \]

- Faraday effect (for photons)
 \[q \rightarrow q - s V_B \]
Absorption (dichroism)
\[\exp(-\kappa_s R) \]

Birefringence
\[\exp\left(-i \frac{\omega}{c_s} R\right) \]

Spin flip (for photons)
\[G_0 \big|_{s, -s} \neq 0 \]

Faraday effect (for photons)
\[q \rightarrow q - s V_B \]
1. **Polarization**
 - Generalities
 - Green’s function

2. **Multiple scattering**
 - Single scattering
 - Born expansion
 - Dyson equation

3. **Berry phase**
 - Bringing the Berry phase to light
 - Geometry
 - Applications
Multiple scattering
several systems, many scales
Single scattering
simpler things first

\[R \rightarrow R' \]

\[\tilde{R} = Z(\tilde{\phi})Y(\tilde{\theta})Z(\tilde{\psi}) \]

\[T_{ss'}(\omega, R, R') = e^{i(s\tilde{\phi} + s'\tilde{\psi})} f_{ss'}(\omega, \tilde{\theta}) \]
Single scattering
simpler things first

rotation \quad R^{-1}R' = \tilde{R} = Z(\tilde{\phi})Y(\tilde{\theta})Z(\tilde{\psi})

T_{ss'}(\omega, R, R') = e^{i(s\tilde{\phi} + s'\tilde{\psi})} f_{ss'}(\omega, \tilde{\theta})
Single scattering
simpler things first

rotation \[R^{-1}R' = \tilde{R} = Z(\tilde{\phi})Y(\tilde{\theta})Z(\tilde{\psi}) \]

\[T_{ss'}(\omega, R, R') = e^{i(s\tilde{\phi} + s'\tilde{\psi})} f_{ss'}(\omega, \tilde{\theta}) \]
Find \(G \) the *effective* Green’s function of a medium filled with scatterers.
Find G the *effective* Green’s function of a medium filled with scatterers.
Find G the *effective* Green’s function of a medium filled with scatterers.
Find G the *effective* Green’s function of a medium filled with scatterers.
Find G the *effective* Green’s function of a medium filled with scatterers.
Find G the effective Green’s function of a medium filled with scatterers.
Find G the *effective* Green’s function of a medium filled with scatterers.
Without correlations: independent scattering approximation

\[\overline{G}(r, r') = G_0(r, r') + \int \rho dx_1 \, G_0(r, x_1) T G_0(x_1, r') + \cdots \]
Without correlations: independent scattering approximation

\[\overline{G}(r, r') = G_0(r, r') + \int \rho d\mathbf{x}_1 \, G_0(r, \mathbf{x}_1) T G_0(\mathbf{x}_1, r') + \cdots \]

\[r \overline{G} r' = \overline{G_0} r' \]
Without correlations: independent scattering approximation

\[\overline{G}(r, r') = G_0(r, r') + \int \rho d\mathbf{x}_1 \ G_0(r, \mathbf{x}_1)T G_0(\mathbf{x}_1, r') + \cdots \]

\[\overline{G} \]

\[\frac{\mathbf{r}}{r} \rightarrow \frac{\mathbf{r}}{r'} = \frac{\mathbf{G}_0}{r'} \]

\[+ \frac{\mathbf{r}}{r} \times \frac{\mathbf{x}_1}{\mathbf{r}} \]
Without correlations: independent scattering approximation

\[\overline{g}(r, r') = g_0(r, r') + \int \rho d\mathbf{x}_1 \ g_0(r, \mathbf{x}_1) T g_0(\mathbf{x}_1, r') + \cdots \]

\[\overline{g} \]

\[r \quad \overline{g} \quad r' = r \quad g_0 \quad r' \]

+ \[r \quad \mathbf{x}_1 \quad r' \]

+ \[r \quad \mathbf{x}_1 \quad \mathbf{x}_2 \quad r' \]

+ \[\cdots \]
Without correlations: independent scattering approximation

\[\overline{G}(r, r') = G_0(r, r') + \int \rho \, dx_1 \, G_0(r, x_1) T G_0(x_1, r') + \cdots \]

\[\overline{G} \]
\[r \quad r' \]
\[= \]
\[r \quad G_0 \quad r' \]
\[+ r \quad x_1 \quad r' \]
\[+ r \quad x_1 \quad x_2 \quad r' \]
\[+ \cdots \]

Self-consistent equation

\[= \quad + \quad \times \]
Multiple scattering

self-energy

Polarization

V. Rossetto

Multiple scattering

Single scattering

Born expansion

Dyson equation

Berry phase

Conclusion
Multiple scattering

self-energy

\[r = 0 \]

\[r' = 0 \]
Multiple scattering
self-energy
Multiple scattering
self-energy

\[\sum_{k=1}^{\infty} \frac{1}{k!} \left(\frac{\partial}{\partial r} \right)^k \left[\frac{1}{r} \right] = 0 \]

\[= 0 \]
Multiple scattering

Self-energy

Polarization
V. Rossetto

Multiple scattering
Single scattering
Born expansion
Dyson equation

Berry phase
Conclusion
Multiple scattering
self-energy

\[r \neq 0 \]
Multiple scattering
self-energy

Polarization
V. Rossetto

Polarization

Multiple scattering
Single scattering
Born expansion
Dyson equation

Berry phase

Conclusion
Multiple scattering
self-energy
Multiple scattering
self-energy

\[\sum \]
Green–Dyson equation
Change scattering definition:

\[= \int dR_1 \int dR_2 \, G_0(q, \omega, R_2, R') T(\omega, R_1, R_2) G_0(q, \omega, R, R_1) \]

Self energy

\[= \lim_{|q| \to \infty} \int dR_1 \int dR_2 \, T(\omega, R_2, R') \overline{G}(\omega, R_1, R_2) T(\omega, R, R_1) \]

\[\int dR \quad \Rightarrow \quad \text{matrix product} \]
Polarization

V. Rossetto

Multiple scattering

Single scattering
Born expansion
Dyson equation

Berry phase

Conclusion

Multiple scattering
of polarized light

Change scattering definition:

\[
\int d\mathbf{R}_1 \int d\mathbf{R}_2 \ G_0(\mathbf{q}, \omega, \mathbf{R}_2, \mathbf{R}') T(\omega, \mathbf{R}_1, \mathbf{R}_2) G_0(\mathbf{q}, \omega, \mathbf{R}, \mathbf{R}_1)
\]

Self energy

\[
= \lim_{|\mathbf{q}| \to \infty} \int d\mathbf{R}_1 \int d\mathbf{R}_2 \ T(\omega, \mathbf{R}_2, \mathbf{R}') \overline{G}(\mathbf{q}, \omega, \mathbf{R}_1, \mathbf{R}_2) T(\omega, \mathbf{R}, \mathbf{R}_1)
\]

\[
\int d\mathbf{R} \quad \implies \quad \text{matrix product}
\]
Multiple scattering
of polarized light

Change scattering definition:

\[
\begin{align*}
\ &= \int dR_1 \int dR_2 \, G_0(q, \omega, R_2, R')T(\omega, R_1, R_2)G_0(q, \omega, R, R_1)
\end{align*}
\]

Self energy

\[
\begin{align*}
\ &= \lim_{|q| \to \infty} \int dR_1 \int dR_2 \, T(\omega, R_2, R')\overline{G}(q, \omega, R_1, R_2)T(\omega, R, R_1) \\
\ &\text{has a direction}
\end{align*}
\]

\[
\int dR \quad \Rightarrow \quad \text{matrix product}
\]
Multiple scattering of polarized light

Change scattering definition:

\[
= \int dR_1 \int dR_2 \, G_0(q, \omega, R_2, R')T(\omega, R_1, R_2)G_0(q, \omega, R, R_1)
\]

Self energy \(\Sigma(\hat{q}, \omega, R, R') \)

\[
= \lim_{|q| \to \infty} \int dR_1 \int dR_2 \ T(\omega, R_2, R')\overline{G}(q, \omega, R_1, R_2)T(\omega, R, R_1)
\]

\[\int dR \quad \Longrightarrow \quad \text{matrix product}\]
Multiple scattering of polarized light

Change scattering definition:

\[
= \int dR_1 \int dR_2 \, G_0(q, \omega, R_2, R') T(\omega, R_1, R_2) G_0(q, \omega, R, R_1)
\]

Self energy \(\Sigma(\hat{q}, \omega, R, R') \)

\[
= \lim_{|q| \to \infty} \int dR_1 \int dR_2 \, T(\omega, R_2, R') \overline{G}(q, \omega, R_1, R_2) T(\omega, R, R_1)
\]

\(\hat{q} \) has a direction

\[
\int dR \quad \Rightarrow \quad \text{matrix product}
\]
1 Polarization
 - Generalities
 - Green’s function

2 Multiple scattering
 - Single scattering
 - Born expansion
 - Dyson equation

3 Berry phase
 - Bringing the Berry phase to light
 - Geometry
 - Applications
The Berry phase
phase and rotation

\[E_s(r, t, RZ(\alpha)) = e^{-is\alpha} E_s(r, t, R) \]

\[T_{ss'}(\omega, R, R') = e^{i(s\bar{\phi} + s'\bar{\psi})} f_{ss'}(\omega, \bar{\theta}) \]

Total phase for a path?
The Berry phase
phase and rotation

\[E_s(r, t, RZ(\alpha)) = e^{-i\alpha} E_s(r, t, R) \]

\[T_{ss'}(\omega, R, R') = e^{i(s\tilde{\phi} + s'\tilde{\psi})} f_{ss'}(\omega, \tilde{\theta}) \]

Total phase for a path?
The Berry phase
phase and rotation

\[E_s(r, t, RZ(\alpha)) = e^{-is\alpha} E_s(r, t, R) \]

\[T_{ss'}(\omega, R, R') = e^{i(s\tilde{\phi} + s'\tilde{\psi})} f_{ss'}(\omega, \tilde{\theta}) \]

Total phase for a path?
Consider a path \((x_1, R_1) \ldots (x_n, R_n)\) such that \(R_n = R_1\) and
\[
\theta_{i+1} - \theta_i \ll 1 \quad \text{and} \quad \phi_{i+1} - \phi_i \ll 1
\]

Rotations \(R_i^{-1}R_{i+1} = \tilde{R}_i\)

\[
\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i
\]

\[
s \sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi
\]
Consider a path \((x_1, R_1) \ldots (x_n, R_n)\) such that \(R_n = R_1\) and \(\theta_{i+1} - \theta_i \ll 1\) \(\phi_{i+1} - \phi_i \ll 1\).

Rotations \(R_i^{-1} R_{i+1} = \tilde{R}_i\)

\[
\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i
\]

\[
s \sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi
\]
Consider a path \((x_1, R_1) \ldots (x_n, R_n)\) such that \(R_n = R_1\) and
\[
\theta_{i+1} - \theta_i \ll 1 \quad \text{and} \quad \phi_{i+1} - \phi_i \ll 1
\]
Rotations \(R_i^{-1} R_{i+1} = \tilde{R}_i\)

\[
\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i
\]

\[
s \sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi
\]
The Berry phase
bringing it to light

Consider a path \((x_1, R_1) \ldots (x_n, R_n)\) such that \(R_n = R_1\) and
\[\theta_{i+1} - \theta_i \ll 1 \quad \text{and} \quad \phi_{i+1} - \phi_i \ll 1\]

Rotations \(R_i^{-1}R_{i+1} = \tilde{R}_i\)

\[\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i\]

\[s \sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi\]
Consider a path \((x_1, R_1) \ldots (x_n, R_n)\) such that \(R_n = R_1\) and \(\theta_{i+1} - \theta_i \ll 1\) and \(\phi_{i+1} - \phi_i \ll 1\).

Rotations \(R_i R_{i+1}^{-1} = \tilde{R}_i\)

\[
\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i
\]

\[
s \sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi
\]
Consider a path \((x_1, R_1) \ldots (x_n, R_n)\) such that \(R_n = R_1\) and
\[
\theta_{i+1} - \theta_i \ll 1 \quad \text{and} \quad \phi_{i+1} - \phi_i \ll 1
\]

Rotations \(R_{i+1}^{-1}R_i = \tilde{R}_i\)

\[
\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i
\]

\[
s \sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi
\]
The Berry phase
geometric interpretation

\[\Omega = \sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \]

\[(1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \]
The Berry phase
geometric interpretation

\[(1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \]

\[\sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \]
The Berry phase geometric interpretation

\[(1 - \cos \theta_i)(\phi_{i+1} - \phi_i)\]

\[\sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i)\]
The Berry phase
geometric interpretation

\[(1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \]

\[\sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \]

\[\Omega_B = -S \begin{pmatrix} \text{Area enclosed on the sphere by the direction of propagation} \end{pmatrix} \]
“Parallel transport” of transverse polarization
In a system with forward scattering, $G(r, r', t, t', R, R')$ contains the statistics of the Berry phase for paths:

- starting at r and ending at r'
- of length $c(t' - t)$
- with initial and final directions $\hat{R}z$ and $\hat{R}'z$

Properties of the Berry phase statistics:

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (?)
- interpretation of experiment data
- theory (?)
In a system with forward scattering, \(G(\mathbf{r}, \mathbf{r}', t, t', \mathbf{R}, \mathbf{R}') \) contains the statistics of the Berry phase for paths

- starting at \(\mathbf{r} \) and ending at \(\mathbf{r}' \)
- of length \(c(t' - t) \)
- with initial and final directions \(\mathbf{R}\hat{z} \) and \(\mathbf{R'}\hat{z} \)

Properties of the Berry phase statistics?

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (？)
- interpretation of experiment data
- theory？
In a system with forward scattering, \(G(r, r', t, t', R, R') \)
contains the statistics of the Berry phase for paths

- starting at \(r \) and ending at \(r' \)
- of length \(c(t' - t) \)
- with initial and final directions \(\hat{R}z \) and \(\hat{R}'z \)

Properties of the Berry phase statistics?

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
 - difficult to measure (?)
 - interpretation of experiment data
 - theory ?
In a system with forward scattering, $G(r, r', t, t', R, R')$ contains the statistics of the Berry phase for paths

- starting at r and ending at r'
- of length $c(t' - t)$
- with initial and final directions $\hat{R}z$ and $\hat{R}'z$

Properties of the Berry phase statistics?

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (?)
- interpretation of experiment data
- theory?
Forward scattering: the direction of propagation remains near \(\hat{z} \).

The trajectory on the sphere is almost flat.
Forward scattering: the direction of propagation remains near \(\hat{z} \).

The trajectory on the sphere is almost flat.

\[L \sim l^* \]
Forward scattering: the direction of propagation remains near \hat{z}

The trajectory on the sphere is almost flat

The distribution of Berry phase is (Lévy):

$$p(\Omega_B) = \frac{\pi \ell^*}{L} \frac{1}{\cosh^2 \left(2\pi \frac{\Omega_B \ell^*}{L} \right)}$$
The Berry phase depolarization

Forward scattering: the direction of propagation remains near \(\hat{z} \)

The trajectory on the sphere is almost flat

The distribution of Berry phase is (Lévy):

\[
p(\Omega_B) = \frac{\pi \ell^*}{L} \frac{1}{\cosh^2 \left(\frac{2\pi \ell^* \Omega_B}{L} \right)}
\]

The outgoing polarization is:

\[
\langle \cos 2\Omega_B \rangle = \frac{L}{2\ell^*} \frac{1}{\sinh \left(\frac{L}{2\ell^*} \right)}
\]
The Berry phase
numerical simulations

Introduction
Geometry
Applications

Conclusion
The Berry phase
numerical simulations
The Berry phase
numerical simulations

Berry phase fluctuations

- $R=20$
- $R=100$
- $R=1000$
- $R=5000$
- $R=10000$
The Berry phase
backscattering experiment
The Berry phase backscattering experiment

Polarization
V. Rossetto

Multiple scattering
Berry phase
Introduction
Geometry
Applications

Conclusion

The Berry phase backscattering experiment
The Berry phase
backscattering experiment

Polarization
V. Rossetto

Multiple scattering
Berry phase
Introduction
Geometry
Applications
Conclusion

The Berry phase backscattering experiment

\[\frac{d\theta}{2} \]

\[\frac{d\theta}{1} \]

\[\frac{d\theta}{2} \]

\[\frac{d\theta}{1} \]
Multiple scattering theory for polarized waves
- takes into account several kinds of anisotropies
- and the Berry phase

Elastic waves should have a Berry phase
- but it was never observed! → experimental challenge?

The Berry phase contains informations on the paths statistics...
- ... therefore on the properties of the medium
- → investigate how to extract relevant informations

Use seismology techniques (stacking, correlations) to retrieve data
Conclusion and outlooks

- Multiple scattering theory for polarized waves
 - takes into account several kinds of anisotropies
 - and the Berry phase

- Elastic waves should have a Berry phase
 - but it was never observed! → experimental challenge?
 - The Berry phase contains informations on the paths statistics...
 - ... therefore on the properties of the medium
 - → investigate how to extract relevant informations
 - Use seismology techniques (stacking, correlations) to retrieve data
Conclusion and outlooks

- Multiple scattering theory for polarized waves
 - takes into account several kinds of anisotropies
 - and the Berry phase

- Elastic waves should have a Berry phase
 - but it was never observed! → experimental challenge?

 - The Berry phase contains informations on the paths statistics...
 - ... therefore on the properties of the medium
 - → investigate how to extract relevant informations
 - Use seismology techniques (stacking, correlations) to retrieve data
Conclusion and outlooks

- Multiple scattering theory for polarized waves
takes into account several kinds of anisotropies
and the Berry phase

- Elastic waves should have a Berry phase
but it was never observed! → experimental challenge?

- The Berry phase contains informations on the paths statistics...

- ... therefore on the properties of the medium
 → investigate how to extract relevant informations
- Use seismology techniques (stacking, correlations) to retrieve data
Conclusion and outlooks

- Multiple scattering theory for polarized waves
 - takes into account several kinds of anisotropies
 - and the Berry phase

- Elastic waves should have a Berry phase
 - but it was never observed! → experimental challenge?

- The Berry phase contains informations on the paths statistics...
 - ... therefore on the properties of the medium
 - → investigate how to extract relevant informations

- Use seismology techniques (stacking, correlations) to retrieve data