Polarization, multiple scattering and the Berry phase

Vincent Rossetto LPMMC Grenoble

MP

CMRS

de Porte, Janua

Presentation overview

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase

Conclusion

Polarization

Generalities

Green's function

2 Multiple scattering

- Single scattering
- Born expansion
- Dyson equation

3 Berry phase

- Bringing the Berry phase to light
- Geometry
- Applications

V. Rossetto

Polarization

Generalities Green's function

Multiple scattering Berry phase Conclusion

Polarization

- Generalities
- Green's function

Nultiple scattering

- Single scattering
- Born expansion
- Dyson equation

Berry phase

- Bringing the Berry phase to light
- Geometry
- Applications

Polarization for different waves

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering Berry phase

Conclusion

Polarization generalities

		-
Polariza	ατιοι	1

V. Rossetto

Polarization Generalities Green's function

Multiple scattering Berry phase

Conclusion

Acoustic waves	1 d.o.f.	no polarization
Electromagnetic waves	2 d.o.f.	polarization
Elastic waves	3 d.o.f.	polarization

Polarization depends on *relative* phases and amplitudes

Polarization representations

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

For the *field* : Jones representations

For the intensity : Stokes representations

V. Rossetto

Polarization Generalities Green's function Multiple scattering

Berry phase

Polarization representations

For the *field* : Jones representations

For the intensity : Stokes representation

Polarization representations

Polarization V. Rossetto

Polarization Generalities

Green's function

Multiple scattering

Berry phase

Conclusion

For the *field* : Jones representations

For the *intensity* : Stokes representations

$$\begin{pmatrix} \mathbf{I} \\ \mathbf{I}_{\perp} \\ \mathbf{Q} \\ \mathbf{U} \\ \mathbf{V} \end{pmatrix} \text{ with } \begin{cases} \mathbf{I} = E^{\dagger}E \\ \mathbf{I}_{\perp} = E^{\dagger} \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \dots \\ \dots \end{cases} E$$

Polarization mobile frames

Polarization

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

E(**r**, t, **R**)

 $E_{s}(\mathbf{r}, t, RZ(\alpha)) = e^{-is\alpha}E_{s}(\mathbf{r}, t, R)$

Polarization mobile frames

Polarization

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

E(**r**, t, **R**)

 $E_{s}(\mathbf{r}, t, RZ(\alpha)) = e^{-is\alpha}E_{s}(\mathbf{r}, t, R)$

Polarization

- V. Rossetto
- Polarization Generalities Green's function
- Multiple scattering Berry phase
- Conclusion

- G₀ relates amplitudes
 - at positions *r* and *r*'
 - at times t and t'
 - in frames R and R'

Euler angles $\mathbf{R} = \mathbf{Z}(\phi)\mathbf{Y}(\theta)\mathbf{Z}(\psi)$ $\Delta(\mathbf{R},\mathbf{R}') = \delta(\phi' - \phi)\delta(\cos\theta' - \cos\theta)$

 $\mathbf{r}' - \mathbf{r} = R D \hat{\mathbf{z}}$

Polarization

- V. Rossetto
- Polarization Generalities Green's function
- Multiple scattering Berry phase
- Conclusion

- G₀ relates amplitudes
 - at positions *r* and *r*'
 - at times t and t'
 - in frames R and R'

Euler angles $\mathbf{R} = \mathbf{Z}(\phi)\mathbf{Y}(\theta)\mathbf{Z}(\psi)$ $\Delta(\mathbf{R},\mathbf{R}') = \delta(\phi' - \phi)\delta(\cos\theta' - \cos\theta)$

 $\mathbf{r}' - \mathbf{r} = R D \hat{\mathbf{z}}$

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

G₀ relates amplitudes

- at positions *r* and *r*'
- at times t and t'
- in frames R and R'

Euler angles $R = Z(\phi)Y(\theta)Z(\psi)$ $\Delta(R,R') = \delta(\phi' - \phi)\delta(\cos \theta' - \cos \theta)$

 $\mathbf{r}' - \mathbf{r} = R D \hat{\mathbf{z}}$

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

G₀ relates amplitudes

• at positions *r* and *r*'

• at times t and t'

• in frames R and R'

 $\begin{aligned} & \text{Euler angles} \quad & \text{R} = \text{Z}(\phi) \text{Y}(\theta) \text{Z}(\psi) \\ & \Delta(\text{R},\text{R}') = \delta(\phi' - \phi) \delta(\cos \theta' - \cos \theta) \end{aligned}$

 $\mathbf{r}' - \mathbf{r} = R D \hat{\mathbf{z}}$

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

G₀ relates amplitudes

• at positions *r* and *r*'

• at times t and t'

• in frames R and R'

 $\begin{aligned} & \text{Euler angles} \quad & \text{R} = \text{Z}(\phi) \text{Y}(\theta) \text{Z}(\psi) \\ & \Delta(\text{R},\text{R}') = \delta(\phi' - \phi) \delta(\cos \theta' - \cos \theta) \end{aligned}$

 $r' - r = R D \hat{z}$

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering Berry phase Conclusion

$$\begin{split} \tilde{\mathbf{G}}_{0}(\boldsymbol{q},\,\omega,\,\mathrm{R},\,\mathrm{R}')\big|_{\mathrm{ss}'} &= \delta_{\mathrm{ss}'} \frac{\Delta(\mathrm{R},\,\mathrm{R}')}{\left(\frac{\omega}{c} - \boldsymbol{q}\cdot\mathrm{R}\boldsymbol{\hat{z}}\right)^{2}} \mathrm{e}^{\mathrm{i}(\mathrm{s}'\psi' - \mathrm{s}\psi)} \\ \int \mathrm{d}\mathrm{R}\int \mathrm{d}\mathrm{R}' \ \tilde{\mathbf{G}}_{0}(\boldsymbol{q},\,\omega,\,\mathrm{R},\,\mathrm{R}') &= \frac{1}{\left(\frac{\omega}{c}\right)^{2} - \boldsymbol{q}^{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

⇒ Directivity is essential to represent polarized waves in mobile frames.

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

$$\tilde{\mathbf{G}}_{0}(\boldsymbol{q},\,\omega,\,\mathbf{R},\,\mathbf{R}')\big|_{\mathtt{ss}'} = \delta_{\mathtt{ss}'} \frac{\Delta(\mathbf{R},\,\mathbf{R}')}{\left(\frac{\omega}{c} - \boldsymbol{q}\cdot\mathbf{R}\hat{\boldsymbol{z}}\right)^{2}} \mathrm{e}^{\mathrm{i}(\mathtt{s}'\psi'-\mathtt{s}\psi)}$$

$$\int \mathrm{d}\mathbf{R} \int \mathrm{d}\mathbf{R}' \; \tilde{\mathbf{G}}_{0}(\boldsymbol{q},\,\omega,\,\mathbf{R},\,\mathbf{R}') = \frac{1}{\left(\frac{\omega}{c}\right)^{2} - \boldsymbol{q}^{2}} \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

⇒ Directivity is essential to represent polarized waves in mobile frames.

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Conclusion

$$\tilde{\mathbf{G}}_{0}(\boldsymbol{q},\,\omega,\,\mathrm{R},\,\mathrm{R}')\big|_{\mathrm{ss}'} = \delta_{\mathrm{ss}'} \frac{\Delta(\mathrm{R},\,\mathrm{R}')}{\left(\frac{\omega}{c} - \boldsymbol{q}\cdot\mathrm{R}\hat{\boldsymbol{z}}\right)^{2}} \mathrm{e}^{\mathrm{i}(\mathrm{s}'\psi' - \mathrm{s}\psi)}$$

$$\int \mathrm{d}\mathbf{R} \int \mathrm{d}\mathbf{R}' \; \tilde{\mathbf{G}}_{0}(\boldsymbol{q},\,\omega,\,\mathbf{R},\,\mathbf{R}') = \frac{1}{\left(\frac{\omega}{c}\right)^{2} - \boldsymbol{q}^{2}} \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

⇒ Directivity is essential to represent polarized waves in mobile frames.

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering Berry phase Conclusion

• Absorption (dichroism)

 $\exp\left(-\kappa_{s}R\right)$

Birefringence

$$\exp\left(-\mathrm{i}rac{\omega}{c_{\mathrm{s}}}R
ight)$$

Spin flip (for photons)

 $G_0|_{s,-s} \neq 0$

• Faraday effect (for photons)

 $q \rightarrow q - sVB$

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering Berry phase Conclusion • Absorption (dichroism)

 $\exp\left(-\kappa_{s}R\right)$

• Birefringence

$$\exp\left(-i\frac{\omega}{c_s}R\right)$$

Spin flip (for photons)

 $G_0\big|_{s,-s} \neq 0$

• Faraday effect (for photons)

 $q \rightarrow q - sVB$

Polarization

V. Rossetto

Polarization Generalities Green's function

Multiple scattering

Berry phase

Absorption (dichroism)

 $\exp(-\kappa_{s}R)$

Birefringence

$$\exp\left(-i\frac{\omega}{c_s}R\right)$$

Spin flip (for photons)

 $\left.G_{0}\right|_{s,-s}\neq0$

• Faraday effect (for photons)

 $q \rightarrow q - sVB$

Polarization

- V. Rossetto
- Polarization Generalities Green's function
- Multiple scattering
- Berry phase
- Conclusion

• Absorption (dichroism)

$$\exp\left(-\kappa_{s}R\right)$$

• Birefringence

$$\exp\left(-i\frac{\omega}{c_s}R\right)$$

• Spin flip (for photons)

$$\left.G_0\right|_{s,-s} \neq 0$$

• Faraday effect (for photons)

 $\boldsymbol{q} \rightarrow \boldsymbol{q} - \boldsymbol{s} \boldsymbol{V} \boldsymbol{B}$

V. Rossetto

Polarization

Multiple scattering

Single scattering Born expansion Dyson equation

Berry phase

Conclusion

Polarizatio

- Generalities
- Green's function

Multiple scattering

- Single scattering
- Born expansion
- Dyson equation

Berry phase

- Bringing the Berry phase to light
- Geometry
- Applications

Multiple scattering several systems, many scales

Polarization

V. Rossetto

Polarization

Multiple scattering

- Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Single scattering simpler things first

Single scattering simpler things first

 $\mathrm{T}_{\mathsf{s}\mathsf{s}'}(\omega,\,\mathbf{R},\,\mathbf{R}')=\mathrm{e}^{\mathrm{i}(\mathsf{s}\phi+\mathsf{s}'\psi)}\;\;\mathit{f}_{\mathsf{s}\mathsf{s}'}(\omega,\, ilde{ heta})$

Single scattering simpler things first

Polarization

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Multiple scattering classical picture

Polarization

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Polarization

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Polarization

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- **Berry phase**
- Conclusion

Polarization

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Multiple scattering classical picture

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Multiple scattering classical picture

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Find G the *effective* Green's function of a medium filled with scatterers.

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation

Berry phase

Conclusion

$$\overline{\mathcal{G}}(\boldsymbol{r},\,\boldsymbol{r}') = \mathcal{G}_0(\boldsymbol{r},\,\boldsymbol{r}') + \int \rho \mathrm{d}\boldsymbol{x}_1 \, \mathcal{G}_0(\boldsymbol{r},\,\boldsymbol{x}_1) \mathrm{T} \mathcal{G}_0(\boldsymbol{x}_1,\,\boldsymbol{r}') + \cdots$$

Polarization

V. Rossetto

Polarization

 $\overline{\mathcal{G}}$

Multiple scattering Single scattering Born expansion Dyson equation

Berry phase

Conclusion

Without correlations : independent scattering approximation

$$\mathbf{r}(\mathbf{r},\mathbf{r}') = \mathcal{G}_0(\mathbf{r},\mathbf{r}') + \int \rho d\mathbf{x}_1 \,\mathcal{G}_0(\mathbf{r},\mathbf{x}_1) T \mathcal{G}_0(\mathbf{x}_1,\mathbf{r}') + \cdots$$
$$\mathbf{r} \frac{\overline{\mathcal{G}}}{\mathbf{r}} \mathbf{r}' = \mathbf{r} \frac{\mathcal{G}_0}{\mathbf{r}} \mathbf{r}'$$

.

Polarization

V. Rossetto

Polarization

 $\overline{\mathcal{G}}$

Multiple scattering Single scattering Born expansion Dyson equation

Berry phase

Conclusion

$$(\mathbf{r}, \mathbf{r}') = \mathcal{G}_0(\mathbf{r}, \mathbf{r}') + \int \rho d\mathbf{x}_1 \, \mathcal{G}_0(\mathbf{r}, \mathbf{x}_1) T \mathcal{G}_0(\mathbf{x}_1, \mathbf{r}') + \cdots$$

$$\mathbf{r} - \frac{\overline{\mathcal{G}}}{\mathbf{r}} \mathbf{r}' = \mathbf{r} - \frac{\mathcal{G}_0}{\mathbf{x}_1 - \mathbf{r}'} \mathbf{r}'$$

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation

Berry phase

Conclusion

$$\overline{\mathcal{G}}(\mathbf{r},\mathbf{r}') = \mathcal{G}_0(\mathbf{r},\mathbf{r}') + \int \rho d\mathbf{x}_1 \,\mathcal{G}_0(\mathbf{r},\mathbf{x}_1) T \mathcal{G}_0(\mathbf{x}_1,\mathbf{r}') + \cdots$$

$$\mathbf{r} - \frac{\overline{\mathcal{G}}}{\mathbf{r}} \mathbf{r}' = \mathbf{r} - \frac{\mathcal{G}_0}{\mathbf{x}_1} \mathbf{r}'$$

$$+ \mathbf{r} - \frac{\mathbf{x}_1}{\mathbf{x}_2} \mathbf{r}'$$

$$+ \mathbf{r} - \frac{\mathbf{x}_1}{\mathbf{x}_2} \mathbf{r}'$$

Polarization

V. Rossetto

Polarization

(

Multiple scattering Single scattering Born expansion Dyson equation

Berry phase

Conclusion

$$\overline{\mathcal{G}}(\mathbf{r}, \mathbf{r}') = \mathcal{G}_0(\mathbf{r}, \mathbf{r}') + \int \rho d\mathbf{x}_1 \, \mathcal{G}_0(\mathbf{r}, \mathbf{x}_1) T \mathcal{G}_0(\mathbf{x}_1, \mathbf{r}') + \cdots$$

$$\mathbf{r} - \frac{\overline{\mathcal{G}}}{\mathbf{r}} \mathbf{r}' = \mathbf{r} - \frac{\mathcal{G}_0}{\mathbf{x}_1} \mathbf{r}'$$

$$+ \mathbf{r} - \frac{\mathbf{x}_1}{\mathbf{x}_2} \mathbf{r}'$$

$$+ \mathbf{r} - \frac{\mathbf{x}_1}{\mathbf{x}_2} \mathbf{r}'$$

$$+ \mathbf{r} - \mathbf{x} - \mathbf{x} - \mathbf{r}'$$
Self-consistent equation

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

V. Rossetto

Polarization

- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

V. Rossetto

Polarization

- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

- V. Rossetto
- Polarization
- Multiple scattering Single scattering Born expansion Dyson equation
- Berry phase
- Conclusion

Polarization

Multiple scattering Single scattering Born expansion Dyson equation

- Berry phase
- Conclusion

Polarization

Multiple scattering self-energy

- Born expansion Dyson equation
- Berry phase
- Conclusion

×

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation Berry phase

Conclusion

Change scattering definition :

$$= \int d\mathbf{R}_1 \int d\mathbf{R}_2 \, \mathbf{G}_0(\boldsymbol{q}, \, \omega, \, \mathbf{R}_2, \, \mathbf{R}') \mathbf{T}(\omega, \, \mathbf{R}_1, \, \mathbf{R}_2) \mathbf{G}_0(\boldsymbol{q}, \, \omega, \, \mathbf{R}, \, \mathbf{R}_1)$$
Self energy
$$= \lim_{|\boldsymbol{q}| \to \infty} \int d\mathbf{R}_1 \, \int d\mathbf{R}_2 \, \mathbf{T}(\omega, \, \mathbf{R}_2, \mathbf{R}') \overline{\mathbf{G}}(, \, \omega, \, \mathbf{R}_1, \, \mathbf{R}_2) \mathbf{T}(\omega, \, \mathbf{R}, \, \mathbf{R}_1)$$

$$\int d\mathbf{R} \quad \Longrightarrow \quad \text{matrix product}$$

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation Berry phase

Conclusion

Change scattering definition :

$$= \int d\mathbf{R}_1 \int d\mathbf{R}_2 \mathbf{G}_0(\boldsymbol{q}, \omega, \mathbf{R}_2, \mathbf{R}') T(\omega, \mathbf{R}_1, \mathbf{R}_2) \mathbf{G}_0(\boldsymbol{q}, \omega, \mathbf{R}, \mathbf{R}_1)$$

Self energy

 $= \lim_{|\boldsymbol{q}| \to \infty} \int dR_1 \, \int dR_2 \, T(\omega, \, R_2, R') \overline{G}(\boldsymbol{q}, \, \omega, \, R_1, \, R_2) T(\omega, \, R, \, R_1)$

 $a \implies matrix product$

×

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation Berry phase

Conclusion

Change scattering definition :

$$= \int d\mathbf{R}_1 \int d\mathbf{R}_2 \ \mathbf{G}_0(\boldsymbol{q}, \, \omega, \, \mathbf{R}_2, \, \mathbf{R}') \mathbf{T}(\omega, \, \mathbf{R}_1, \, \mathbf{R}_2) \mathbf{G}_0(\boldsymbol{q}, \, \omega, \, \mathbf{R}, \, \mathbf{R}_1)$$
Self energy
$$= \lim_{|\boldsymbol{q}| \to \infty} \int d\mathbf{R}_1 \int d\mathbf{R}_2 \ \mathbf{T}(\omega, \, \mathbf{R}_2, \mathbf{R}') \overline{\mathbf{G}}(\boldsymbol{q}, \, \omega, \, \mathbf{R}_1, \, \mathbf{R}_2) \mathbf{T}(\omega, \, \mathbf{R}, \, \mathbf{R}_1)$$
[↑]has a direction

×

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation Berry phase

Conclusion

Change scattering definition :

$$= \int d\mathbf{R}_1 \int d\mathbf{R}_2 \mathbf{G}_0(\boldsymbol{q},\,\omega,\,\mathbf{R}_2,\,\mathbf{R}') \mathbf{T}(\omega,\,\mathbf{R}_1,\,\mathbf{R}_2) \mathbf{G}_0(\boldsymbol{q},\,\omega,\,\mathbf{R},\,\mathbf{R}_1)$$

Self energy
$$\Sigma(\hat{\boldsymbol{q}}, \omega, R, R')$$

$$\lim_{|\boldsymbol{q}|\to\infty} \int d\mathbf{R}_1 \int d\mathbf{R}_2 \ \mathrm{T}(\omega, \mathbf{R}_2, \mathbf{R}') \overline{\mathbf{G}}(\boldsymbol{q}, \omega, \mathbf{R}_1, \mathbf{R}_2) \mathrm{T}(\omega, \mathbf{R}, \mathbf{R}_1)$$
[↑]has a direction

 \implies matrix production

×

_

Polarization

V. Rossetto

Polarization

Multiple scattering Single scattering Born expansion Dyson equation Berry phase

Conclusion

Change scattering definition :

$$= \int \mathrm{dR_1} \, \int \mathrm{dR_2} \, \mathbf{G}_0(\boldsymbol{q},\,\omega,\,\mathbf{R_2},\,\mathbf{R}') \mathrm{T}(\omega,\,\mathbf{R_1},\,\mathbf{R_2}) \mathbf{G}_0(\boldsymbol{q},\,\omega,\,\mathbf{R},\,\mathbf{R_1})$$

Self energy
$$\Sigma(\hat{\boldsymbol{q}}, \omega, R, R')$$

dR

$$\lim_{|\boldsymbol{q}|\to\infty} \int dR_1 \int dR_2 T(\omega, R_2, R') \overline{G}(\boldsymbol{q}, \omega, R_1, R_2) T(\omega, R, R_1)$$
[↑]has a direction

 \implies matrix product

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase

Introduction Geometry Applications

Conclusion

Polarization

- Generalities
- Green's function

Multiple scattering

- Single scattering
- Born expansion
- Dyson equation

3 Berry phase

- Bringing the Berry phase to light
- Geometry
- Applications

The Berry phase phase and rotation

 $\mathrm{T}_{\mathsf{s}\mathsf{s}'}(\omega,\,\mathrm{R},\,\mathrm{R}') = \mathrm{e}^{\mathrm{i}(\mathsf{s}\phi+\mathsf{s}'\psi)} \;\; \mathit{f}_{\mathsf{s}\mathsf{s}'}(\omega,\,\widetilde{ heta})$

Total phase for a path?

The Berry phase phase and rotation

Total phase for a path?

The Berry phase phase and rotation

Total phase for a path?

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

Consider a path $(\boldsymbol{x}_1, \mathbf{R}_1) \dots (\boldsymbol{x}_n, \mathbf{R}_n)$ such that $\mathbf{R}_n = \mathbf{R}_1$ and $\theta_{i+1} - \theta_i \ll 1$ $\phi_{i+1} - \phi_i \ll 1$

Rotations $\mathbf{R}_i^{-1}\mathbf{R}_{i+1} = \tilde{\mathbf{R}}_i$

 $\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i$

 $s\sum_{i=0}^{n-1} ilde{\phi}_i+ ilde{\psi}_i\simeq -s\sum_{i=0}^{n-1}(1-\cos heta_i)(\phi_{i+1}-\phi_i) \mod 2\pi$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

Consider a path $(\boldsymbol{x}_1, \mathbf{R}_1) \dots (\boldsymbol{x}_n, \mathbf{R}_n)$ such that $\mathbf{R}_n = \mathbf{R}_1$ and $\theta_{i+1} - \theta_i \ll 1$ $\phi_{i+1} - \phi_i \ll 1$

 $ilde{\phi}_i + ilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i$

 $s\sum_{i=0}^{n-1} ilde{\phi}_i+ ilde{\psi}_i\simeq -s\sum_{i=0}^{n-1}(1-\cos heta_i)(\phi_{i+1}-\phi_i)\mod 2\pi$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Applications

Consider a path $(\mathbf{x}_1, \mathbf{R}_1) \dots (\mathbf{x}_n, \mathbf{R}_n)$ such that $\mathbf{R}_n = \mathbf{R}_1$ and $\theta_{i+1} - \theta_i \ll 1$ $\phi_{i+1} - \phi_i \ll 1$

Rotations $\mathbf{R}_{i}^{-1}\mathbf{R}_{i+1} = \tilde{\mathbf{R}}_{i}$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

Consider a path $(\boldsymbol{x}_1, \mathbf{R}_1) \dots (\boldsymbol{x}_n, \mathbf{R}_n)$ such that $\mathbf{R}_n = \mathbf{R}_1$ and $\theta_{i+1} - \theta_i \ll 1$ $\phi_{i+1} - \phi_i \ll 1$

 $ilde{\phi}_i + ilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos heta_i + \psi_{i+1} - \psi_i$

 $s\sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s\sum_{i=0}^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i) \mod 2\pi$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

Consider a path $(\boldsymbol{x}_1, \mathbf{R}_1) \dots (\boldsymbol{x}_n, \mathbf{R}_n)$ such that $\mathbf{R}_n = \mathbf{R}_1$ and $\theta_{i+1} - \theta_i \ll 1$ $\phi_{i+1} - \phi_i \ll 1$

 $\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i$

 $s\sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s\sum_{i=0}^{n-1} (1-\cos\theta_i)(\phi_{i+1}-\phi_i) \mod 2\pi$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

Consider a path $(\boldsymbol{x}_1, \mathbf{R}_1) \dots (\boldsymbol{x}_n, \mathbf{R}_n)$ such that $\mathbf{R}_n = \mathbf{R}_1$ and $\theta_{i+1} - \theta_i \ll 1$ $\phi_{i+1} - \phi_i \ll 1$

$$\tilde{\phi}_i + \tilde{\psi}_i \simeq (\phi_{i+1} - \phi_i) \cos \theta_i + \psi_{i+1} - \psi_i$$

$$s\sum_{i=0}^{n-1} \tilde{\phi}_i + \tilde{\psi}_i \simeq -s\sum_{i=0}^{n-1} (1-\cos heta_i)(\phi_{i+1}-\phi_i) \mod 2\pi$$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

 $(1 - \cos \theta_i)(\phi_{i+1} - \phi_i)$ θ_i

 $\phi_{i+1} - \phi_i$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

 $\sum^{n-1} (1 - \cos \theta_i)(\phi_{i+1} - \phi_i)$ i=0

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

$$\sum_{i=0}^{n-1} (1-\cos\theta_i)(\phi_{i+1}-\phi_i)$$

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

The Berry phase example

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

"Parallel transport" of transverse polarization

The Berry phase example

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

"Parallel transport" of transverse polarization

The Berry phase example

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

"Parallel transport" of transverse polarization

The Berry phase example

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

"Parallel transport" of transverse polarization

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

In a system with forward scattering, $G(\mathbf{r}, \mathbf{r}', t, t', R, R')$ contains the statistics of the Berry phase for paths

- starting at r and ending at r'
- of length c(t'-t)
- with initial and final directions $R\hat{z}$ and $R'\hat{z}$

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (?)
- interpretation of experiment data
- theory?

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

In a system with forward scattering, $G(\mathbf{r}, \mathbf{r}', t, t', R, R')$ contains the statistics of the Berry phase for paths

- starting at r and ending at r'
- of length c(t'-t)
- with initial and final directions $R\hat{z}$ and $R'\hat{z}$

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (?)
- interpretation of experiment data
- theory?

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

In a system with forward scattering, $G(\mathbf{r}, \mathbf{r}', t, t', R, R')$ contains the statistics of the Berry phase for paths

- starting at *r* and ending at *r*'
- of length c(t'-t)
- with initial and final directions $R\hat{z}$ and $R'\hat{z}$

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (?)
- interpretation of experiment data
- theory?

Polarization

V. Rossetto

Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Conclusion

In a system with forward scattering, $G(\mathbf{r}, \mathbf{r}', t, t', R, R')$ contains the statistics of the Berry phase for paths

- starting at *r* and ending at *r*'
- of length c(t'-t)
- with initial and final directions $R\hat{z}$ and $R'\hat{z}$

- depends on the heterogeneity of the medium
- depends on transport properties (anisotropies)
- difficult to measure (?)
- interpretation of experiment data
- theory?

Forward scattering : the direction of propagation remains near \hat{z}

The trajectory on the sphere is almost flat

Conclusion

Forward scattering : the direction of propagation remains near \hat{z}

The trajectory on the sphere is almost flat

- V. Rossetto
- Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Forward scattering : the direction of propagation remains near \hat{z}

The trajectory on the sphere is almost flat

The distribution of Berry phase is (Lévy) :

$$p(\Omega_{\mathsf{B}}) = rac{\pi \ell^*}{L} rac{1}{\cosh^2\left(2\pi\Omega_{\mathsf{B}}rac{\ell^*}{L}
ight)}$$

- V. Rossetto
- Polarization

Multiple scattering

Berry phase Introduction Geometry Applications

Forward scattering : the direction of propagation remains near \hat{z}

The trajectory on the sphere is almost flat

The distribution of Berry phase is (Lévy) :

$$p(\Omega_{\mathrm{B}}) = rac{\pi \ell^{*}}{L} rac{1}{\cosh^{2}\left(2\pi\Omega_{\mathrm{B}}rac{\ell^{*}}{L}
ight)}$$

The outgoing polarisation is :

$$\langle \cos 2\Omega_{
m B}
angle = rac{L}{2\ell^*} rac{1}{\sinh rac{L}{2\ell^*}}$$

- Applications
- Conclusion

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase Introduction Geometry Applications
- Conclusion

The Berry phase backscattering experiment

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase Introduction Geometry Applications
- Conclusion

The Berry phase backscattering experiment

The Berry phase backscattering experiment

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase
- Conclusion

- Multiple scattering theory for polarized waves
- takes into account several kinds of anisotropies
- and the Berry phase
 - Elastic waves should have a Berry phase
- $\bullet\,$ but it was never observed $! \to experimental challenge ?$
- The Berry phase contains informations on the paths statistics...
- ... therefore on the properties of the medium
- $\bullet \rightarrow$ investigate how to extract relevant informations
- Use seismology techniques (stacking, correlations) to retrieve data

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase
- Conclusion

- Multiple scattering theory for polarized waves
- takes into account several kinds of anisotropies
- and the Berry phase
- Elastic waves should have a Berry phase
- but it was never observed ! \rightarrow experimental challenge ?
- The Berry phase contains informations on the paths statistics...
- ... therefore on the properties of the medium
- $\bullet \rightarrow$ investigate how to extract relevant informations
- Use seismology techniques (stacking, correlations) to retrieve data

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase
- Conclusion

- Multiple scattering theory for polarized waves
- takes into account several kinds of anisotropies
- and the Berry phase
- Elastic waves should have a Berry phase
- but it was never observed $! \rightarrow$ experimental challenge ?
- The Berry phase contains informations on the paths statistics...
- ... therefore on the properties of the medium
- ullet ightarrow investigate how to extract relevant informations
- Use seismology techniques (stacking, correlations) to retrieve data

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase
- Conclusion

- Multiple scattering theory for polarized waves
- takes into account several kinds of anisotropies
- and the Berry phase
- Elastic waves should have a Berry phase
- but it was never observed $! \rightarrow$ experimental challenge ?
- The Berry phase contains informations on the paths statistics...
- ... therefore on the properties of the medium
- $\bullet \rightarrow$ investigate how to extract relevant informations
- Use seismology techniques (stacking, correlations) to retrieve data

- V. Rossetto
- Polarization
- Multiple scattering
- Berry phase
- Conclusion

- Multiple scattering theory for polarized waves
- takes into account several kinds of anisotropies
- and the Berry phase
- Elastic waves should have a Berry phase
- but it was never observed $! \rightarrow$ experimental challenge ?
- The Berry phase contains informations on the paths statistics...
- ... therefore on the properties of the medium
- $\bullet \ \rightarrow$ investigate how to extract relevant informations
- Use seismology techniques (stacking, correlations) to retrieve data