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large scale structure (e.g. interfaces, velocity gradients)

Kruste

Mantel

Pn 8     Sn 4.6

Pg 6     Sg 3.5 Kruste

MantelLg  3 − 3.5

small scale heterogeneity

Przybilla et al. JGR 2006
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Lg blockage is an anomalous attenuation of waves that propagate in the
curst compared to waves propagating below.
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the geology is complicated

Chazalon et al. GJI 1993

Christoph Sens-Schönfelder, Ludovic Margerin, Michel Campillo Lg-Blockage in the western Pyrenees



Introduction
Radiative Transfer Theory

Modeling of the Pyrenean Data

The seismic wave field
Observations of Lg Blockage
Possible Explanations for Lg Blockage

Structure of the Pyrenees

in summary

E-W oriented mountain range

Jump in Moho depth from up to
50 km (Iberian plate) to about 30
- 35 km

Subduction of Iberian lower crust
only in the eastern part

In the western Pyrenees: uplift of
lower crustal block into the upper
crust (distribution of earthquakes
and tomography) −6˚
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effect of the jump in Moho depth

Chazalon et al. GJI 1993

Christoph Sens-Schönfelder, Ludovic Margerin, Michel Campillo Lg-Blockage in the western Pyrenees



Introduction
Radiative Transfer Theory

Modeling of the Pyrenean Data

The seismic wave field
Observations of Lg Blockage
Possible Explanations for Lg Blockage

Large Scale Structure

effect of uplifted lower crust bodies and Moho jump

Chazalon et al. GJI 1993
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Large Scale Structure

Conclusion

Even a very realistic macroscopic velocity
structure is unable to explain the observed
extent of Lg-wave attenuation. No geomet-
rical effect. (Chazalon et al. Geophys, J. Int.

1993)
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Small Scale Heterogeneity

Hypothesis

The blockage of Lg-waves is caused by scat-
tering at small scale heterogeneity beneath
the western Pyrenees.
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Fundamentals of Radiative Transfer Theory

Basic quantity of RTT is the specific intensity I(ω, t,n, r)
⇒ frequency, time, space, and direction dependent Energy flux density

describes the spatio–temporal distribution of seismic energy

⇒ model seismogram envelopes

neglects wave phenomena (interference)

assumes a statistical distribution of heterogeneity

may be based on an energy balance consideration
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Energy Transfer Equation (acoustic case)

Change of intensity I(n, r) along a path element ds

A

B
C

D

A decrease due to scattering (g0)

B decrease due to absorption (b)

C increase due to sacttering (g(n,n′))

D increase due to sources

∂

∂s
I(n, r) = −(g0 + b)I(n, r) +

∫

4π

g(n,n′)I(n′, r)dΩn
′
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Elastic case

1 P-mode and 2 degenerate S-modes

modes are coupled by conversion scattering coefficients gPS , gSP

and gSS

S-wave scattering requires the treatment of polarization
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Monte-Carlo technique to solve the RTE

discretize the wave and propagate the wave packets independently
like particles

Intensity is modeled as the number density of these particles

Movement of particles is governed by the large scale velocity
structure (ray tracing)

Interaction with medium small scale velocity structure
(heterogeneity) by isolated scattering events

⇐ Probabilities for mode conversion and scattering angles are described
by the scattering coefficients g(n,n′) from the Born-approximation

(two S-polarizations are regarded as separate modes)
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Characterization of the medium

Medium has random velocity fluctuations:

v(r) = v0(1 + ξ(r)) with 〈ξ(r)〉 = 0 and 〈ξ(r)2〉 = ε2

ξ(r) is characterized by it’s spectral density PSD (exponential ACF)

PSD(m) =
8πε2a2

(1 + a2m2)2

with the correlation length a.

The PSD enters the scattering coefficient g

gPP (Θ) =
l4

4π
|XPP (Θ)|2PSD

(

2l

γ0

sin

(

Θ

2

))

Type and amplitude of velocity fluctuation governs the scattering process.
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Elastic case – Treatment of the S-Polarisation

assume linearly polarized waves

⇒ dependence of scattering coefficient on
scattering angle Θ and Φ factorizes
(great advantage for modeling)
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Elastic case – Treatment of the S-Polarisation

assume linearly polarized waves

⇒ dependence of scattering coefficient on
scattering angle Θ and Φ factorizes
(great advantage for modeling)

decompose arbitrary polarization into
Iφ and Iθ XZ

Y

Θ
Φθ
Φφ
IS
l
IS
r

ψ
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assume linearly polarized waves

⇒ dependence of scattering coefficient on
scattering angle Θ and Φ factorizes
(great advantage for modeling)

decompose arbitrary polarization into
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Elastic case – Treatment of the S-Polarisation

assume linearly polarized waves

⇒ dependence of scattering coefficient on
scattering angle Θ and Φ factorizes
(great advantage for modeling)

decompose arbitrary polarization into
Iφ and Iθ

⇒ Iφ and Iθ propagate independently

⇒ three coupled RTEs for two S- and
one P-mode

XZ

Y

Θ
Φθ
Φφ
IS
l
IS
r

ψ

Christoph Sens-Schönfelder, Ludovic Margerin, Michel Campillo Lg-Blockage in the western Pyrenees



Introduction
Radiative Transfer Theory

Modeling of the Pyrenean Data

Equation of Radiative Transfer
Monte-Carlo Technique

Monte-Carlo Simulation

Energy propagation in continental crust

30 km thick crust (constant velocity, strong scattering)

mantle (velocity gradient, weak scattering)

+ Interfaces
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Monte-Carlo Simulation

Energy propagation in continental crust

30 km thick crust (constant velocity, strong scattering)

mantle (velocity gradient, weak scattering)

+ Interfaces

Resulting phases in this model

Kruste

Mantel

Pn 8     Sn 4.6

Pg 6     Sg 3.5 Kruste

MantelLg  3 − 3.5

Pn - Pg - Sn - Sg Lg: guided S-wave
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Energy Propagation in the Model

Example
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3D model of the locally increased heterogeneity
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Measurements
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two reference envelopes for propagation through

eastern Pyrenees (without obstacle)

western Pyrenees (with obstacle)

Inversion

Model

three blocks described by:

intrinsic attenuation (Q)

scattering strength l∗
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Inversion

genetic algorithm

random generation of starting models in 0.003 < ε < 0.3,
0.1 < a < 100 km, and 50 < QP < 5000

recombination of the parameters of successful models

modification of individual parameters (mutation) with an
exponentially distributed factor

⇒ random sampling of the parameter space
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Results

Fit of data by predictions of the best model

eastern Pyrenees

8.16 6.03 4.65 3.56 3 2
v [km/s]

IQP IQS ε a l∗
S

crust 1400 623 2.1% 0.77 km 750 km
mantle 1070 475 2.0% 2.0 km 1530 km
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Results

Fit of data by predictions of the best model

western Pyrenees

8.16 6.03 4.65 3.56 3 2
v [km/s]

IQP IQS ε a l∗
S

crust 1400 623 2.1% 0.77 km 750 km
mantle 1070 475 2.0% 2.0 km 1530 km

Pyrenean body 402 179 7.2% 0.77 km 63 km
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Effect of the continent-continent collision
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topography

m

eastern Pyrenees: convergent motion
led to subduction of Iberian lower crust

western Pyrenees: no subduction

Convergent and rotational motion led to
strong internal deformation with exchange
of material between different crustal layers.
This heterogeneity causes the increased scat-
tering that is responsible for the Lg-blockage.
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developed an algorithm for Monte-Carlo simulations of energy
propagation

multiple elastic conversion scattering
combination of deterministically described large scale velocity
structure and statistically described heterogeneity
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developed an algorithm for Monte-Carlo simulations of energy
propagation

multiple elastic conversion scattering
combination of deterministically described large scale velocity
structure and statistically described heterogeneity

presented a detailed analysis of energy propagation through the
Pyrenees
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developed an algorithm for Monte-Carlo simulations of energy
propagation

multiple elastic conversion scattering
combination of deterministically described large scale velocity
structure and statistically described heterogeneity

presented a detailed analysis of energy propagation through the
Pyrenees

presented a model for the Lg-blockage in the western Pyrenees that
explains the observation

showed that scattering is an important process for the Lg-blockage
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