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Outline

Motivation

N particles in two modes

’Typical’ evolution -
creation of entanglement

Effect of particle losses
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Motivation

’better’ statistics = with uncertainties smaller than shot
noise

NEEDED:
entangled states

limits due to decoherence and dephasing

here: effect of particle losses
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Second quantization, N bosons in two modes

|n,N − n〉 - symmetric state with n atoms in mode 1, the rest
in mode 2

Example: 〈r1, r2|1, 1〉 = 1√
2
(φ1(r1)φ2(r2) + φ1(r2)φ2(r1))

Thus |N,N〉 - very entangled state

â, b̂ - annihilation operators in modes 1 and 2
[â, â†] = 1 [â, b̂] = 0 [b̂, b̂†] = 1

Coherent state:

|θ, φ〉N = 1√
N !

(

cos θeı̇φâ† + sin θe−ı̇φb̂†
)N

|0〉
â|θ, φ〉N =

√
N cos θeı̇φ|θ, φ〉N−1
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Initial states

|φ = 0〉 =
(
â†+b̂†√
2

)N
|0〉 =∑Nn=0

√
1
2N

(N
n

)
|n,N − n〉
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Initial states

|φ = 0〉 =
(
â†+b̂†√
2

)N
|0〉 =∑Nn=0

√
1
2N

(N
n

)
|n,N − n〉

Ŝz = (n̂a − n̂b) /2 ∝ sin θ
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Evolution

Hamiltonian (no tunneling):

Ĥ =
χa

2

(

a†a†aa
)

+ χab
(

a†ab†b
)

+
χb

2

(

b†b†bb
)

=

= χŜ2z + f
(

N̂
)

If |ψ〉 = ∑Nn=0 cn|n,N − n〉 , then

|ψ(t)〉 =
N∑

n=0

cne
−ı̇(χa−χab)(a†a†aa)t

×e−ı̇(χb−χab)(b†b†bb)t|n,N − n〉

Evolution of a coherent state



Introduction Entanglement Particle losses

Fisher information F

F = F (ρ̂)
F > N - useful
entangled state

maxF = N2

P. Hyllus et al. Phys. Rev. A, 82 (2010) 012337
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Experiments

n nφ1 2

kBT

E0

E1

E2

ψ1 ψ2

ϕ1

ϕ0
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Experiments

C. Gross et all, Nature 464, (2010) 1165
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Master equation

∂tρ̂ = −
i

~

[

Ĥ, ρ̂
]

︸ ︷︷ ︸

von Neuman equation

+L1ρ̂+ L2ρ̂+ L3ρ̂
︸ ︷︷ ︸

particle losses

,

where Ln = L(a)n + L(b)n

L(a)n ρ̂ = γn
[

ân, ρ̂
(

â†
)n]

+ γn
[

ânρ̂,
(

â†
)n]

Exact solution
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Master equation

∂tρ̂ = −
i

~

[

Ĥ, ρ̂
]

︸ ︷︷ ︸

von Neuman equation

+L1ρ̂+ L2ρ̂+ L3ρ̂
︸ ︷︷ ︸

particle losses

,

where Ln = L(a)n + L(b)n

L(a)n ρ̂ = γn
[

ân, ρ̂
(

â†
)n]

+ γn
[

ânρ̂,
(

â†
)n]

Exact solution

Here: only 2-body losses

γ1, γ2 - rates of 2−body
losses in ”a” and ”b”
mode
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How does it work?

Example: atoms in only one mode, only 1-body losses, diagonal
elements of the master equation pn = 〈n|ρ̂|n〉
Ĥ0 = χ1â

†â†ââ

dρ̂

dt
= − i

~

[

Ĥ0, ρ̂
]

+
γ

2

[

â, ρ̂â†
]

+
γ

2

[

âρ̂, â†
]
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How does it work?

Example: atoms in only one mode, only 1-body losses, diagonal
elements of the master equation pn = 〈n|ρ̂|n〉
Ĥ0 = χ1â

†â†ââ

dρ̂

dt
= − i

~

[

Ĥ0, ρ̂
]

+
γ

2

[

â, ρ̂â†
]

+
γ

2

[

âρ̂, â†
]

〈

n
∣
∣
∣

[

Ĥ0, ρ̂
]∣
∣
∣n
〉

= 0
〈

n
∣
∣
∣2âρ̂â†

∣
∣
∣n
〉

= 2(n + 1)pn+1
〈

n
∣
∣
∣â†âρ̂+ ρâ†â

∣
∣
∣n
〉

= 2npn

dpn
dt
= γ(n+ 1)pn+1 − γnpn
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Method 1: Quantum jumps approach

∂tρ̂ = − i~
[

Ĥ0, ρ̂
]

+ 12
∑

i[Ĉiρ̂, Ĉ
†
i ] + [Ĉi, ρ̂Ĉ

†
i ]

|ψ (t)>

 C1  |ψ 

||C1 |ψ  ||
>
>

 Ci  |ψ 

||Ci |ψ  ||
>
>

 e- iΔt Heff|ψ  

||e- iΔt Heff|ψ  ||
>

>

p1

pi

1 - Σpi

pi =
〈

Ĉ†i Ĉi
〉

∆t, Heff = H0 − ı̇2
∑

i Ĉ
†
i Ĉi∆t then

lim
W

W∑

l=1

|ψl〉 〈ψl| → ρ̂(t)
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Method 2: Exact diagonalization

Main idea:
(1) to solve one-mode problem
(2) use the solution (1) to recostruct solution for two modes
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Method 2: Exact diagonalization

Main idea:
(1) to solve one-mode problem
(2) use the solution (1) to recostruct solution for two modes

a(k, r;n, t) = 〈k|ρ̂(t)|k + r〉 solution of the master equation in
”a” mode with the initial condition 〈k|ρ̂(t = 0)|k + r〉 = δnk

ρk+r,lk,l+r(t) =
N0−l−r∑

m=k

ρm+r,N0−m−rm,N0−m (0) a(k, r;m, t)[b(l, r;N0−m−r, t)]∗
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Method 2: Exact diagonalization
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Particle losses

Bloch sphere?

ρ̂ = pN ρ̂N + pN−2 ρ̂N−2 + pN−4 ρ̂N−4 + . . . + p0 ρ̂0



Introduction Entanglement Particle losses

Fisher information with losses

From macroscopic to mesoscopic!
C. Gross et all, Nature 464, (2010) 1165, M.F. Riedel et all, Nature 464, (2010) 1170
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Fisher information with losses

Ĥ = χ12

(

a†a†aa
)

+ χ22

(

b†b†bb
)

∂tρ̂ = − i~
[

Ĥ, ρ̂
]

+ L(1)2 ρ̂+ L(2)2 ρ̂

number of lost atoms ∼ 30% − 40%
γ1, γ2 - loss rates in the first and the second mode
χ1, χ2 - effective interaction energy of a pair of atoms in the
first and the second mode
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Fisher information with losses

Ĥ = χ12

(

a†a†aa
)

+ χ22

(

b†b†bb
)

∂tρ̂ = − i~
[

Ĥ, ρ̂
]

+ L(1)2 ρ̂+ L(2)2 ρ̂

number of lost atoms ∼ 30% − 40%
γ1, γ2 - loss rates in the first and the second mode
χ1, χ2 - effective interaction energy of a pair of atoms in the
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Subspace with N atoms
Case, when no losses occurred
(although they were possible)
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p(N, t) - probability of an loss event at time t in the cloud with
initially N atoms
2-body losses

IF N1 > N2 THEN
p(N1, t) > p(N2, t)

losses more probable in |0, N〉 than in |N/2, N/2〉
N0

N
(t

)

TIME

S. Whitlock et al. Phys. Rev. Let. 104 (2010) 120402
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Do nothing and gain !

〈n,N − n|ρ̂N |m,N −m〉
no losses with 2-body losses

ρ̂
(0)
N ρ̂

(0)
N e
−γ2t
(

(n−N2 )
2
+(m−N2 )

2
)

Final state =
∣
∣
∣
N
2 ,
N
2

〉

(but with probability pN ≪ 1)
process nr 1: ’Gaussian shrinking’
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Subspace with N − 2 atoms

Two body losses only

What happens when SINGLE lost event
occurred
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Subspace with N − 2 atoms - after one loss event

Ŝz = (n̂a − n̂b) /2

⇒Mixture
process nr 2: Channeling (with very strong destructive
interference for the cat state )
to avoid it: γ1 ≫ γ2



Introduction Entanglement Particle losses

Subspace with N − 2 atoms - after one loss event

state = incoherent mixture of |θi, φi〉 ∆φ ∝ ∆t2 ∝ χ
γN

(estimated for small losses)
process nr 3: phase noise
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Subspace with N − 2 atoms - after one loss event

state = incoherent mixture of |θi, φi〉 ∆φ ∝ ∆t2 ∝ χ
γN

(estimated for small losses)
process nr 3: phase noise



Introduction Entanglement Particle losses

Subspace with N − 2 atoms - after one loss event

Fixed time (Trev/2) but different loss rates

state = incoherent mixture of |θi, φi〉 ∆φ ∝ χ
2γN

to avoid it: increase γ or suppress χ
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Fisher information with losses
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Summary

1 Exact solution of the master equation
2 Decoherence in subspaces with different number of atoms

’Gaussian shrinking’
Phase noise
Destructive interference (atoms lost from a or b?)

3 Huge advantage for highly asymmetric losses, using
Feshbach resonances

4 Gain via post-selection (?)

TODO-list

scaling with N

beyond B-H model

experimental conditions ( phase noise, finite temperature)
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Thank you for your attention!!
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