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Introduction

Motivation

"better’ statistics = with uncertainties smaller than shot
noise

NEEDED:

entangled states

limits due to decoherence and dephasing
here: effect of particle losses



Introduction

Second quantization, N bosons in two modes

|n, N —n) - symmetric state with n atoms in mode 1, the rest
in mode 2

Example: (r1,12[1,1) = =5 (¢1(r1)¢2(r2) + ¢1(r2)d2(r1))
Thus |N, N) - very entangled state

d,ZA) - annihilation operators in modes 1 and 2

Coherent state:

) AN
|0, 0)n = ﬁ (cos fei?at + sin 96*1¢’bT) |0)

al0, ) n = VN cos0e'?|6, ¢) n_1



Introduction

Initial states




Introduction

Initial states

S = (Ng — 1) /2 x sinf
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Evolution

Hamiltonian (no tunneling):
H = % (aTaTaa) + Xab (aTabTb) + % (bTbTbb) =
= XS24+ f(N)

If ) = SN caln, N —n) , then
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Evolution of a coherent state



Entanglement

Fisher information F

N? T .

F=F(p)
F > N - useful NZ/2
entangled state

max F = N2 N
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P. Hyllus et al. Phys. Rev. A, 82 (2010) 012337



Experiments

Y Y =0 @o



sRRee s S
N -
I i &
W £,
o

. W o= .
5.7um 2404
0
o [ ]
20}
N Z
[y
-40
0 0.5 5 1
<Cos(d)>

C. Gross et all, Nature 464, (2010) 1165



Master equation

‘
h

von Neuman equation

Op=—5[H,p| +Lip+Lop+Lsp,

particle losses

where £,, = 57({1) + E,(lb)

£ =i ()] o (0
Exact solution



Particle losses

Master equation

_
h

von Neuman equation

Op=—5[H,p| +Lip+Lop+Lsp,

particle losses
where £,, = 57({1) + E,(lb)

£ = [ (a1)"] +3 [a75. (a1)"]
Exact solution

Here: only 2-body losses
Y1, Ve - rates of 2—body
losses in 7a” and ”b”
mode




How does it work?

Example: atoms in only one mode, only 1-body losses, diagonal
elements of the master equation p, = (n|p|n)

o = viatataa

dp T
d_if): ;{Hmﬂ}



How does it work?

Example: atoms in only one mode, only 1-body losses, diagonal
elements of the master equation p, = (n|p|n)

o = viatataa

% - —% (0.9 + 7 [a. pal] + % [ap.a]

(] ) =

n> =2(n + )ppy1

dp
d—t" =y(n+ 1)pp+1 — ynpn



Method 1: Quantum jumps approach

Op=—1 [ﬁo,ﬁ} + 3 %3[Cip, Cl1 + [Ci, pC]]
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Method 2: Exact diagonalization

Main idea:
(1) to solve one-mode problem
(2) use the solution (1) to recostruct solution for two modes



Method 2: Exact diagonalization

Main idea:
(1) to solve one-mode problem
(2) use the solution (1) to recostruct solution for two modes

a(k,r;n,t) = (k|p(t)|k + r) solution of the master equation in
”a” mode with the initial condition (k|p(t = 0)|k +r) = &}

No—l—r

Pty = 3 oo (0) alk, vy m, )[b(l, s No—m—r, t)]"

m=Fk



Method 2: Exact diagonalization
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Particle lo

Particle losses

Bloch sphere?

N atoms N-2 atoms N-4 atoms

e

P=DNPN + DPN-2pPN-2 + DN—aPN—4 + ... +Dopo




Fisher information with losses

Particle losses
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From macroscopic to mesoscopic!

C. Gross et all, Nature 464, (2010) 1165, M.F. Riedel et all, Nature 464, (2010) 1170



Fisher information with losses

i =% (afafac) + %2 (b16f0b)  0p =~ [A1,5] + £+ £
number of lost atoms ~ 30% — 40%
Y1, v - loss rates in the first and the second mode
X1, X2 - effective interaction energy of a pair of atoms in the
first and the second mode



Particle

Fisher information with losses

i =% (afafac) + %2 (b16f0b)  0p =~ [A1,5] + £+ £
number of lost atoms ~ 30% — 40%
Y1, v - loss rates in the first and the second mode
X1, X2 - effective interaction energy of a pair of atoms in the
first and the second mode

a5

:
symmetric
or asymmetric losses (y,=0)

asymmetric losses and energies (y;=0=x,) -+
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Subspace with N atoms
Case, when no losses occurred
(although they were possible)



Particle

p(N,t) - probability of an loss event at time ¢ in the cloud with
initially N atoms
2-body losses

IF N1 > No THEN
p(vat) > p(N2>t)

losses more probable in |0, N) than in |[N/2, N/2)

No

N()

TIME

S. Whitlock et al. Phys. Rev. Let. 104 (2010) 120402



Particle losses

Do nothing and gain !

<n7N_n|ﬁN|m>N_m>

no losses

with 2-body losses
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(but with probability py < 1)
process nr 1: ’Gaussian shrinking’



Subspace with N — 2 atoms

Two body losses only

What happens when SINGLE lost event
occurred



Particle losses

Subspace with N — 2 atoms - after one loss event

(2
o N-2 atoms
o
\O
TIME
» | N atoms
t
(os )
7 tha N-2 atoms
/,6,,

=Mixture
process nr 2: Channeling (with very strong destructive
interference for the cat state )

to avoid it: y1 > ¥



b b & » | N atoms
. -y [N-2 @toms
0Lt Xy )

state = incoherent mixture of |6;, ¢;) A oc At? WLN
(estimated for small losses)
process nr 3: phase noise



Particle losses

Subspace with N — 2 atoms - after one loss event
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state = incoherent mixture of |6;, ¢;) A oc At? WLN
(estimated for small losses)
process nr 3: phase noise




Particle losses

Subspace with N — 2 atoms - after one loss event

Fixed time (7,¢,/2) but different loss rates
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state = incoherent mixture of |0;, ¢;)
to avoid it: increase 7y or suppress x



Particle losses

Fisher information with losses

45 T
symmetric

ran asymmetric losses (y;=0)

asymmetric losses and energies (y;=0=),) --------

~v1 = 0 no channeling
v1 = 0 and x2 = 0 no phase
noise

Ftot

subspaces with smaller number of atoms - similar to N — 2
subspace



Particle losses

Summary

@ Exact solution of the master equation
© Decoherence in subspaces with different number of atoms

@ ’Gaussian shrinking’
¢ Phase noise
@ Destructive interference (atoms lost from a or b?)

© Huge advantage for highly asymmetric losses, using
Feshbach resonances

© Gain via post-selection (7)
TODO-list

@ scaling with N

@ beyond B-H model

@ experimental conditions ( phase noise, finite temperature)



Thank you for your attention!!
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