Effect of particle losses on superpositions of phase states in Bose Josephson junctions

Krzysztof Pawłowski, Dominique Spehner, Anna Minguzzi, Giulia Ferrini

PEPS-PTI

12 October 2012, Grenoble

Outline

 $n_1 n_2$

- Motivation
- $\bullet~N$ particles in two modes
- 'Typical' evolution creation of entanglement

• Effect of particle losses

Motivation

'better' statistics = with uncertainties smaller than shot noise

NEEDED: entangled states limits due to decoherence and dephasing here: effect of particle losses

Second quantization, N bosons in two modes

 $|n,N-n\rangle$ - symmetric state with n atoms in mode 1, the rest in mode 2

Example: $\langle \boldsymbol{r}_1, \boldsymbol{r}_2 | 1, 1 \rangle = \frac{1}{\sqrt{2}} \left(\phi_1(\boldsymbol{r}_1) \phi_2(\boldsymbol{r}_2) + \phi_1(\boldsymbol{r}_2) \phi_2(\boldsymbol{r}_1) \right)$ Thus $|N, N\rangle$ - very entangled state

 \hat{a}, \hat{b} - annihilation operators in modes 1 and 2 $[\hat{a}, \hat{a}^{\dagger}] = 1$ $[\hat{a}, \hat{b}] = 0$ $[\hat{b}, \hat{b}^{\dagger}] = 1$

Coherent state:

$$\begin{aligned} |\theta,\phi\rangle_N &= \frac{1}{\sqrt{N!}} \left(\cos\theta e^{i\phi} \hat{a}^{\dagger} + \sin\theta e^{-i\phi} \hat{b}^{\dagger} \right)^N |0\rangle \\ \hat{a}|\theta,\phi\rangle_N &= \sqrt{N} \cos\theta e^{i\phi} |\theta,\phi\rangle_{N-1} \end{aligned}$$

Initial states

$$\left|\phi=0\right\rangle = \left(\frac{\hat{a}^{\dagger} + \hat{b}^{\dagger}}{\sqrt{2}}\right)^{N} \left|0\right\rangle = \sum_{n=0}^{N} \sqrt{\frac{1}{2^{N}} \binom{N}{n}} \left|n, N-n\right\rangle$$

Initial states

 $\hat{S}_z = \left(\hat{n}_a - \hat{n}_b\right)/2 \propto \sin\theta$

Evolution

Hamiltonian (**no tunneling**):

$$\hat{H} = \frac{\chi_a}{2} \left(a^{\dagger} a^{\dagger} a a \right) + \chi_{ab} \left(a^{\dagger} a b^{\dagger} b \right) + \frac{\chi_b}{2} \left(b^{\dagger} b^{\dagger} b b \right) =$$
$$= \chi \hat{S}_z^2 + f\left(\hat{N} \right)$$

If
$$|\psi\rangle = \sum_{n=0}^{N} c_n |n, N - n\rangle$$
, then

$$\begin{aligned} |\psi(t)\rangle &= \sum_{n=0}^{N} c_n e^{-i(\chi_a - \chi_{ab}) \left(a^{\dagger} a^{\dagger} aa\right)t} \\ &\times e^{-i(\chi_b - \chi_{ab}) \left(b^{\dagger} b^{\dagger} bb\right)t} |n, N - n\rangle \end{aligned}$$

Evolution of a coherent state

Fisher information F

Experiments

Experiments

C. Gross et all, Nature 464, (2010) 1165

Master equation

$$\underbrace{\partial_t \hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right]}_{\text{von Neuman equation}} + \underbrace{\mathcal{L}_1 \hat{\rho} + \mathcal{L}_2 \hat{\rho} + \mathcal{L}_3 \hat{\rho}}_{\text{particle losses}},$$
where $\mathcal{L}_n = \mathcal{L}_n^{(a)} + \mathcal{L}_n^{(b)}$

$$\mathcal{L}_n^{(a)} \hat{\rho} = \gamma_n \left[\hat{a}^n, \hat{\rho} \left(\hat{a}^\dagger \right)^n \right] + \gamma_n \left[\hat{a}^n \hat{\rho}, \left(\hat{a}^\dagger \right)^n \right]$$
Exact solution

Master equation

$$\underbrace{\partial_{t}\hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right]}_{\text{von Neuman equation}} + \underbrace{\mathcal{L}_{1}\hat{\rho} + \mathcal{L}_{2}\hat{\rho} + \mathcal{L}_{3}\hat{\rho}}_{\text{particle losses}},$$
where $\mathcal{L}_{n} = \mathcal{L}_{n}^{(a)} + \mathcal{L}_{n}^{(b)}$

$$\mathcal{L}_{n}^{(a)}\hat{\rho} = \gamma_{n} \left[\hat{a}^{n}, \hat{\rho} \left(\hat{a}^{\dagger}\right)^{n}\right] + \gamma_{n} \left[\hat{a}^{n}\hat{\rho}, \left(\hat{a}^{\dagger}\right)^{n}\right]$$
Exact solution

Here: only 2-body losses γ_1, γ_2 - rates of 2-body losses in "a" and "b" mode

How does it work?

Example: atoms in only one mode, only 1-body losses, diagonal elements of the master equation $p_n = \langle n | \hat{\rho} | n \rangle$ $\hat{H}_0 = \chi_1 \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}$

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}_0, \hat{\rho} \right] + \frac{\gamma}{2} \left[\hat{a}, \hat{\rho} \hat{a}^\dagger \right] + \frac{\gamma}{2} \left[\hat{a} \hat{\rho}, \hat{a}^\dagger \right]$$

How does it work?

Example: atoms in only one mode, only 1-body losses, diagonal elements of the master equation $p_n = \langle n | \hat{\rho} | n \rangle$ $\hat{H}_0 = \chi_1 \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}$

$$\begin{aligned} \frac{d\hat{\rho}}{dt} &= -\frac{i}{\hbar} \left[\hat{H}_0, \hat{\rho} \right] + \frac{\gamma}{2} \left[\hat{a}, \hat{\rho} \hat{a}^{\dagger} \right] + \frac{\gamma}{2} \left[\hat{a}\hat{\rho}, \hat{a}^{\dagger} \right] \\ \left\langle n \middle| \left[\hat{H}_0, \hat{\rho} \right] \middle| n \right\rangle &= 0 \\ \left\langle n \middle| 2\hat{a}\hat{\rho} \hat{a}^{\dagger} \middle| n \right\rangle &= 2(n+1)p_{n+1} \\ \left\langle n \middle| \hat{a}^{\dagger} \hat{a}\hat{\rho} + \rho \hat{a}^{\dagger} \hat{a} \middle| n \right\rangle &= 2np_n \\ \frac{dp_n}{dt} &= \gamma(n+1)p_{n+1} - \gamma np_n \end{aligned}$$

Method 1: Quantum jumps approach

$$\partial_{t}\hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}_{0}, \hat{\rho} \right] + \frac{1}{2} \sum_{i} [\hat{C}_{i}\hat{\rho}, \hat{C}_{i}^{\dagger}] + [\hat{C}_{i}, \hat{\rho}\hat{C}_{i}^{\dagger}] \\ \xrightarrow{\left[\left| \psi \right\rangle \\ ||C_{1} ||\psi \right\rangle ||} \\ \psi (t) \xrightarrow{\left[p_{i} \right]} \xrightarrow{\left[\frac{C_{i} ||\psi \right\rangle \\ ||C_{i} ||\psi \right\rangle ||} \\ \xrightarrow{\left[\frac{C_{i} ||\psi \right\rangle \\ ||C_{i} ||\psi \right\rangle ||} \\ \xrightarrow{\left[\frac{e^{-i\Delta t H_{eff}} ||\psi \right\rangle \\ \frac{e^{-i\Delta t H_{eff}} ||\psi \right\rangle ||} }$$

$$p_{i} = \left\langle \hat{C}_{i}^{\dagger} \hat{C}_{i} \right\rangle \Delta t, \quad H_{eff} = H_{0} - \frac{i}{2} \sum_{i} \hat{C}_{i}^{\dagger} \hat{C}_{i} \Delta t \text{ then}$$
$$\lim_{W} \sum_{l=1}^{W} |\psi_{l}\rangle \left\langle \psi_{l} \right| \to \hat{\rho}(t)$$

Method 2: Exact diagonalization

Main idea:

- (1) to solve one-mode problem
- (2) use the solution (1) to reconstruct solution for two modes

Method 2: Exact diagonalization

Main idea:

- (1) to solve one-mode problem
- (2) use the solution (1) to reconstruct solution for two modes

 $a(k,r;n,t) = \langle k|\hat{\rho}(t)|k+r\rangle$ solution of the master equation in "a" mode with the initial condition $\langle k|\hat{\rho}(t=0)|k+r\rangle = \delta_k^n$

$$\rho_{k,l+r}^{k+r,l}(t) = \sum_{m=k}^{N_0-l-r} \rho_{m,N_0-m}^{m+r,N_0-m-r}(0) \ a(k,r;m,t) [b(l,r;N_0-m-r,t)]^*$$

Method 2: Exact diagonalization

Particle losses

 $\hat{\rho} = p_N \,\hat{\rho}_N \quad + \quad p_{N-2} \,\hat{\rho}_{N-2} \,+\, p_{N-4} \,\hat{\rho}_{N-4} \,+\, \dots \,+\, p_0 \,\hat{\rho}_0$

From macroscopic to mesoscopic!

C. Gross et all, Nature 464, (2010) 1165, M.F. Riedel et all, Nature 464, (2010) 1170

$$\hat{H} = \frac{\chi_1}{2} \left(a^{\dagger} a^{\dagger} a a \right) + \frac{\chi_2}{2} \left(b^{\dagger} b^{\dagger} b b \right) \qquad \partial_t \hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] + \mathcal{L}_2^{(1)} \hat{\rho} + \mathcal{L}_2^{(2)} \hat{\rho}$$
number of lost atoms ~ 30% - 40%
 γ_1, γ_2 - loss rates in the first and the second mode
 χ_1, χ_2 - effective interaction energy of a pair of atoms in the first and the second mode

$$\hat{H} = \frac{\chi_1}{2} \left(a^{\dagger} a^{\dagger} a a \right) + \frac{\chi_2}{2} \left(b^{\dagger} b^{\dagger} b b \right) \qquad \partial_t \hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] + \mathcal{L}_2^{(1)} \hat{\rho} + \mathcal{L}_2^{(2)} \hat{\rho}$$

number of lost atoms ~ 30% - 40%
 γ_1, γ_2 - loss rates in the first and the second mode
 χ_1, χ_2 - effective interaction energy of a pair of atoms in the
first and the second mode

Subspace with N atoms Case, when no losses occurred (although they were possible)

p(N,t) - probability of an loss event at time t in the cloud with initially N atoms 2-body losses

IF $N_1 > N_2$ THEN $p(N_1, t) > p(N_2, t)$

losses more probable in $|0, N\rangle$ than in $|N/2, N/2\rangle$

S. Whitlock et al. Phys. Rev. Let. 104 (2010) 120402

Do nothing and gain !

Subspace with N-2 atoms

Two body losses only

What happens when ${\bf SINGLE}$ lost event occurred

process nr 2: Channeling (with very strong destructive interference for the cat state) to avoid it: $\gamma_1 \gg \gamma_2$

state = incoherent mixture of $|\theta_i, \phi_i\rangle \quad \Delta \phi \propto \Delta t^2 \propto \frac{\chi}{\gamma N}$ (estimated for small losses) process nr 3: phase noise

process nr 3: phase noise

state = incoherent mixture of $|\theta_i, \phi_i\rangle$ $\Delta \phi \propto \frac{\chi}{2\gamma N}$ to avoid it: increase γ or suppress χ

 $\gamma_1 = 0$ no channeling $\gamma_1 = 0$ and $\chi_2 = 0$ no phase noise

subspaces with smaller number of atoms - similar to ${\cal N}-2$ subspace

Summary

- Section Section Exact solution of the master equation
- **②** Decoherence in subspaces with different number of atoms
 - 'Gaussian shrinking'
 - Phase noise
 - Destructive interference (atoms lost from a or b?)
- Huge advantage for highly asymmetric losses, using Feshbach resonances
- Gain via post-selection (?)

TODO-list

- scaling with N
- beyond B-H model
- experimental conditions (phase noise, finite temperature)

Thank you for your attention!!