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Current blockade in classical single-electron nanomechanical resonator
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We consider a single-electron transistor where the central metallic island can oscillate. It has been shown
that for a weak coupling of the elastic and electric degrees of freedom, the position of the island fluctuates with
a small variation of the current through the device. In this paper, we consider the strong coupling limit. We
show that the system undergoes a static mechanical instability that is responsible for the opening of a gap in the
current-voltage characteristics even at the degeneracy point. We provide an analytical description of the
transition point, taking into account the nonequilibrium mechanical state. We also discuss how the mechanical
nature of the suppression of the current can be probed experimentally by a slow modulation of the gate voltage.
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I. INTRODUCTION

Nanoelectromechanics constitutes a rapidly developing
and promising field of mesoscopic physics.!~> A particularly
important and experimentally investigated device is the
single-electron transistor with mobile parts.*”’ Due to the
Coulomb blockade, the interplay between the electrical and
mechanical degrees of freedom influences the current in a
sizable way. When the oscillation amplitude is sufficiently
large with respect to the tunneling length, the modulation of
the tunneling rates in metallic dots leads to the shuttle phe-
nomena, where the oscillations become synchronized with
the electron tunneling.3-!> If the oscillation does not modify
the distance between source and drain (for instance, for os-
cillations perpendicular to the source-drain line), it may, nev-
ertheless, induce a modulation of the tunneling rates through
the variation of the electric potential energy in space.'®?!
Typically, this effect is due to the position dependence of the
gate capacitance. If the Coulomb force generated by the
variation of the number of electrons by 1 is F, the distance of
the two equilibrium positions of the island will be X, =F/k,
where k is the effective elastic constant of the island. The
corresponding variation of the elastic energy is of the order
of F?/k= Ej. For source-drain bias voltages V of the order of
Eg/e (with e the electron charge), the interplay between the
electrical and mechanical degrees of freedom becomes im-
portant. Typically, Er is very small, but within the range of
observation. For a nanotube of 500 nm length and 1 nm ra-
dius, suspended at 100 nm from a gate, E; can be of the
order of tens of ueV. Previous analytic work concentrates on
the case eV> E;.'"?2 Very recently, the current for eV=Ej
at the degeneracy point has been considered numerically.?! In
this paper, we present an analytic theory that gives a good
description of the whole region eV=FE; and arbitrary gate
voltage taking into account the nonequilibrium state of the
mechanical degrees of freedom. We find that sweeping the
gate voltage for eV > Ep, the current shows a jump from 0 in
the blocked regions to a finite value in the conducting re-
gions. We also discuss the behavior of the system for eV
< Ej. We argue how a static classical mechanical instability
blocks the current for any value of the gate voltage. This
effect can be regarded as the classical counterpart of the

1098-0121/2007/76(16)/165317(7)

165317-1

PACS number(s): 73.23.—b, 85.85.+j

Franck-Condon blockade in the quantum limit that has been
shown to lead to current suppression in molecular
devices.”>?® The fact that this phenomenon exists for sys-
tems with many electronic levels and that it survives in the
classical limit opens new perspectives of experimental obser-
vation. Moreover, considering the classical limit allows us to
obtain a transparent analytical solution and to treat complex
situations, such as the nonstationary evolution discussed in
the following.

The paper is organized as follows. In Sec. II, we describe
the system discussed and its modelization. In Sec. III, we
present a simple mean field description of the current block-
ade, neglecting both the fluctuation of the charge and of the
position of the mobile part. In Sec. IV, we give an analytical
description of the fluctuations. Specifically, we calculate the
probability distribution for the energy. This allows us to ob-
tain the current and the rms of the position. A comparison
with a Monte Carlo simulation is also presented. In Sec. V,
we show how the bistability can be probed by an oscillating
gate voltage. Section VI gives our conclusions.

II. SYSTEM AND MODELIZATION

Let us consider a single-electron transistor with a mobile
central island (see Fig. 1). The model has been discussed in
detail in previous works (see, for instance, Refs. 17, 18, 20,
and 21). We discuss the simplest configuration of symmetric
capacitances, resistances, and bias. We also assume that Ej
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FIG. 1. Left panel: Circuit diagram for the single-electron tran-
sistor with an oscillating central island. The variable X parametrizes
an effective position. Right panel: Conducting regions shaded in the
V,—V near a degeneracy point between N and N+1 electrons.
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> kgT>hw,: classical low temperature behavior. Here, w, is
the oscillator frequency. For small oscillations, the gate ca-
pacitance varies linearly in the displacement of the island X.
Charge transport can be described as usual by a master equa-
tion, where the rates are modulated by the position of the
island. We discard in this paper cotunneling processes since
their main effect is to induce a small current in the blocked
regions. Far from the boundaries of the conducting region,
this contribution is very small and can be safely neglected.
Near the boundary on the blocked side, cotunneling can give
a relevant contribution, and will be discussed elsewhere. For
molecular devices, these processes have been very recently
considered.””-?® For positive source-drain voltage (V>0)
smaller than the Coulomb energy E. (defined below), and
gate voltage V, tuned close to the value for the states with N
and N+1 electrons on the island to be degenerate, the only
two nonvanishing rates read

T,r=-E p(X)/e’R; for E; <0, (1)

and zero otherwise. Here, I'; and I'y are the rates for the
transfer of electrons from the left lead to the island and from
the island to the right lead, respectively. Ry is the tunneling
resistance of the left and right contacts. The rates are con-
trolled by the Coulomb energy gain for tunneling:

E g(X)==(eV2) + UN+1.X) ¥ UN.X),  (2)
where
U(N,X) = Ec(X)N* = NeV,C,(X)/Cs(X), 3)

with Eq(X)=e?/2Cs the Coulomb energy, Cs(X)=2C
+C,(X), and, finally, C and C,(X) the junction and gate ca-
pacitances, respectively. For small displacements,

EL’R(X)zEL,R(O)iFX'i' cee s (4)
where we defined
F=[dU(N+ 1,X)/dX] - [dU(N,X)/dX] (5)

at X=0. If we choose X=0 as the position where the Cou-
lomb force for N electrons in the island equals the elastic
force, then F>0 is the net force (in the direction of negative
X) acting on the mobile part when N+1 electrons are popu-
lating the island. For small variations of X, we can neglect
the weak gate and bias voltage dependence of F that is as-
sumed constant in the rest of the paper.

The motion of the island is described by the Newton
equation:

mX(t) = — kX(1) - Fn(r), (6)

where m is the effective mass of the island and n(z) is the
number of electrons on the island minus N. This quantity
fluctuates stochastically between 0 and 1 according to the
rates given by Egs. (1) and (4). It has been shown that the
coupling to the electronic degrees of freedom introduces an
intrinsic damping coefficient.!” We, thus, do not introduce an
extrinsic dissipation into Eq. (6), assuming that the intrinsic
dissipation is dominant. Adding an extrinsic dissipation does
not change the complexity of the problem, since it is enough

to add a term —7X(r) to Eq. (6) that will renormalize the
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intrinsic dissipation coefficient [see Eq. (11) in the follow-
ing]. We prefer to consider the undamped case to keep the
minimal number of parameters in the model. It is convenient
to introduce now reduced variables:

x=XIX,, u=XwX, T=w,,

v=eVIEg, v,=[eV,CICs(0)— (2N + 1)Ec(0)VEL,
and
F() = EE/ezRTwO,

with wi:k/m and X,=F/k. For fixed x, the stationary cur-
rent is given by the usual expression

Ryl Rpe T(I'p (v¥4) - (vg—)c)2

% - \%4 (FL+FR)_ U2 (7)

In the plane v—v P it leads to the Coulomb diamond structure
of the current, as shown in Fig. 1, with the degeneracy point
sitting at v,=0 for x=0.

The effect of the oscillation of the central island on the
current can be studied analytically far from the boundaries of
the conducting regions.!'” In that limit, it has been shown that
the probability distribution of x and u becomes Gaussian
with a width controlled by the voltage bias v, and the varia-
tion of the current due to the mechanical coupling is always
a small part of the unperturbed value. In this paper, we will
focus on the regions near the degeneracy point and near the
two lines of transition from the conducting to the noncon-
ducting region (see Fig. 1, right panel). We assume that I,
>1 so that the problem can be tackled by exploiting the
separation of time scales between the slow mechanical oscil-
lations and the frequent electronic hopping.

III. MEAN FIELD DESCRIPTION AND CURRENT
BLOCKADE

We begin with a very simple description of the stochastic
force by substituting into Eq. (6) the occupation number (),
with its average over a time short with respect to w(jl and
long with respect to the inverse of typical tunneling rate
~Ey/e*Ry. This average depends only on the position of the
mobile part: (n(z))=n(x), where

(/2 +v,—x)lv for |vg -x|<vi2
n(x)=10 for v, —x <-v/2 (8)
1 forv,—x> +v/2.

This induces an average force on the island that depends on
the occupation of the island itself. It is convenient to intro-
duce an effective potential to describe this force (in units of
Ec):

X

U, pfx) = f [x + 7(x) ]dx, 9)

Xm

where x,,=(v/2+v,)/(1-v). The form of 7(x) given above
implies that d*U,./dx* equals (1-1/v) for |v,—x|<v/2,
and 1 otherwise. For v>1, the potential has, thus, a single
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FIG. 2. (Color online) Left panel: Effective potential U, for
v,=—1/2 and v=1.05, 1, and 0.95. Right panel: Shape of the con-
ducting regions (filled regions) in the plane v,—v when the dis-
placement of the mobile part is taken into account. The dashed lines
indicate the border of the Coulomb diamonds for x=0 and x=-1.
The small shaded diamond indicates the mechanically bistable
region.

minimum at x,, with —1<x,<0 and (by construction)
U,fx,,)=0. For 0<v <1, instead, two minima may be
present, depending on the value of v,. The evolution of the
potential as a function of v is shown in Fig. 2 for v,=-1/2.
At v=1, the potential becomes flat, and for v <1, it develops
two side minima.

The qualitative behavior of the device can now be under-
stood in a very simple way. The crucial point is that the
displacement of the average position acts as an effective
positive shift of the gate voltage [cf. Eq. (8)]. This means
that on the v—v, plane, the displacement of the oscillator of
a unit distance (i.e., F/k) will induce a rigid shift of the
current plot in v, of 1 [i.e., AeV,=EC,/Cs]. The blocked
diamond with N electrons and undisplaced oscillator (x=0)
will then overlap in the region v <1 with the blocked dia-
mond with N+1 electrons and displaced oscillator (x=-1).
The result is the presence of a mechanical bistable region
(indicated in Fig. 2 by the dashed diamond), where current is
always blocked. This effect corresponds to the classical limit
of the Franck-Condon blockade (or phonon blockade) in mo-
lecular devices.???4%0-28 The simple argument given above
applies quite generally, indicating that a current blockade
near the degeneracy point should be a general feature of
Coulomb blockade devices with mobile parts modulating the
capacitances. The precise form of the current-voltage char-
acteristics will then depend on the specific device, but the
classical description gives a general and very simple view of
the current blockade.

A plot of the current in the mean field approximation as a
function of the gate and bias voltages is presented in Fig. 3.
This plot reports simply Eq. (7) with x=x,,,, i.e., with x at the
stable position for v>1. The position of the Coulomb dia-
mond for x=0 is also shown dashed for reference. Note that
the current is always continuously vanishing at the border of
the conducting region in this approximation.

IV. ANALYTICAL DESCRIPTION OF THE
FLUCTUATIONS IN PHASE SPACE

Let us now discuss the behavior of the system in the
conducting region (v>1). The dependence of the current
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FIG. 3. (Color online) Current as a function of the reduced gate
(v,) and bias voltages (v) in the mean field approximation of Eq.
(7) with x=x,,. The opening of a gap is clearly visible together with
the fact that the current is continuous at the boundary of the con-
ducting region. The border of the Coulomb diamonds for x=0 is
shown dashed.

and the probability distribution on x along the degeneracy
line (v,=—1/2 and v>1) has been considered very recently
in Ref. 21 numerically. We present here an analytical theory
that gives a good description of the current in the whole
conducting region, including near the boundaries and at the
apex. For I',>1, the electrons have the time to hop in and
out of the grain many times before it can move a sizable
distance. One can then write a Fokker-Planck equation for
the probability Q(x,u) of finding the mobile part at a given

position x with a velocity!'®2027 y
99 d
T Q[Fe( x) = 7(x)u]Q - —uQ + > o 2S()C)Q
(10)
where F,(x)=-dU,/dx, and
1 on
-—= 1
7,(x) = oT, a0, (11)

is the intrinsic damping.'”?° The nonvanishing second mo-
ment is

S(x)= - dr(én(7)on(0)) = %;ﬁ(x)] (12)

where on(7)=n(7)—{(n(t)).

It is convenient to simplify further the equation by ex-
ploiting the fact that the fluctuating and dissipative part is
small for I')>1. One can then expect that the system per-
forms many oscillations following the same isoenergetic tra-
jectory in the phase space before slowly drifting away on
another nearby trajectory. The distribution function will,
thus, depend on the position and the velocity mainly through
the effective energy:

E,(x,u) = Uyglx) + u/2. (13)

If we define the function
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FIG. 4. Lines of equal energy and, thus, of equal probability Q
in the x—u plane for the values of v and v, indicated.

P(E) = J dxduQ(x,u) E - E,(x,u)], (14)

we can then derive from Eq. (10) an equation for it:

»_ i{ EYPE) + Z[BEPE]|.  (15)
a oE| "¢ *EP ’
with
a(E) = (S(x)/2 = n(x)u’)p, (16)
B(E) = (S(i/2)y (17)

where the averages are taken on the trajectories in the x—u
plane at fixed energy E. These trajectories are shown for
some values of v and v, in Fig. 4. Near the apex and the
borders, the shape is quite different from an ellipse, which is
the harmonic oscillator trajectory.

The stationary solution of Eq. (15) is

E
P(E)=Nexp{f dE’a(E’)/,B(E’)}/B(E), (18)

where A is a normalization constant. Once P(E) is known,
the relevant physical quantities can be calculated by averag-
ing, first, over the trajectories, and then over the energy.

A. Current and position fluctuations at the apex of the
conducting region

Let us now test the theory at the strongest value of the
interaction, at the apex of the new Coulomb diamond: v=1
and v,=—1/2. The orbits are quite simple for this case (see
Fig. 4). The velocity is constant for |x+1/2|<1/2, and the
trajectory is exactly half an ellipse for |x+1/2|>1/2. The
averages of 7, and S on this trajectories lead to the following
expressions for « and 3:
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_ SR2-2%E SE

a= L B=———, (19
(1 + m\2E) 2(1 + m2E)

where S=1/3T, and 7,=1/T, are the averages of S(x) and

7,(x), respectively, on the segment —1 <x<0. This leads to

the probability

P(E) = N(1 + m2E)eEIE. (20)

The current at the apex can be obtained by integrating ex-
pression (7) with the distribution (20) [and using Eq. (14)].
We find that

1
———~0.0837. (21)

R
Liw= Lv,==1/2)=
14 6+2V3m

With the same technique, one can calculate the rms of x:

40 + 3672

172
m) =~ 0.628. (22)

((e=2))""= (
It is interesting to notice that the current-voltage curves, once

rescaled with V/Ry, become universal in the limit of large
r

o

B. Current and position fluctuations at the border of the
conducting region

The method can be applied to describe the transition from
the blocked to the conducting state at finite v. In order to
keep the calculation simple, we consider v>1. For v,=
—v/2, the minimum of the potential is at x=0. The potential
is harmonic for x<<0 with oscillation period 27, and har-
monic for x>0 with period 27(1—1/v)~"2. The oscillations
will, thus, be more elongated inside the conducting regions
(see Fig. 4). The calculation at leading order in 1/v gives the
distribution

37T\J‘JE 4(1-1/v)v
PE)=N|1-—F— . (23)
N{ 8v\2(1 - 1/0)”2}

With this distribution, we find that the current jumps at v,
=-v/2 (and symmetrically at v,=-v/2-1) with

R_T — +) — 8 L L -3
VI(v,vg——v/Z )= 37120{1 ~ oy 10 +o(v )}.
For arbitrary values of v, and v, we found the analytical
expressions for a and B, and they have been used to obtain
the current by numerical integration. We do not give the
details of the calculation that is trivial, but rather tedious.
One has to calculate the averages of « and B on trajectories
that are composed of arcs of ellipses matched at the bound-
aries of the segment —1 <x<<0.

The results for the current are presented in Figs. 5 and 6.
The features discussed above are clearly visible in Fig. 5: the
discontinuity of the current at the threshold, and the opening
of the gap. It is also evident that the current flattens as a
function of v, with respect to the mean field approximation.
This can be seen even more clearly in Fig. 6, which shows a
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FIG. 5. (Color online) Current as a function of v ¢ and v, includ-
ing the effect of position fluctuation. The dependence on v, is re-
duced inside the conducting region with respect to the mean field
result due to the average over the different positions visited by the
oscillating part.

comparison of the contour plot of the current for the mean
field results and the fluctuation corrected ones.

C. Probability distribution for the position

From the form of P(E), one can easily obtain the prob-
ability distribution for the position P(x):

o T(E)
P(x) = f P(E)IE f Tx-xs] 2. (24)
0

0 T(E)
Here, T(E) is the period of the trajectory, and xg(¢) is the
trajectory as a function of time for a given energy E. At the
apex of the conducting region, P(x) takes a particularly
simple form (Fig. 7)

2 1
——— for -1 <x<O0
P() f “pear] 2ETP
Y=, 2 HRE-2)

T(E)ﬁ for0<x< \EE
2E -

(25)

where T(E)=2m+ V2/E is the period of the oscillation in our
units, and 6 is the Heaviside function. As can be seen from
Fig. 7, the probability is symmetric with respect to the value
x=-1/2. The mobile part moves at a constant velocity inside

bias voltage
bias voltage

A\

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
gate voltage

_2 A 2

gate voltage

FIG. 6. Comparison of the contour plots of the current in mean
field approximation (left) and taking into account the fluctuations
(right) as a function of the gate (v,) and bias voltage (v).
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FIG. 7. Probability distribution for the position at the apex of
the conducting region.

the region —1 <x<<0 for any value of the energy E, thus the
probability is flat in that region. It then decays on a scale of
X, symmetrically. A comparison with the numerical simula-
tions of Ref. 21 shows that the analytical approximation is
accurate, apart from a small region around x=0 and x=-1,
where it is not able to reproduce the narrow peak precursors
of the bistability.

D. Comparison with Monte Carlo simulation

To check these results, we have performed a Monte Carlo
simulation of the model (see, for instance, Refs. 13 and 21).
Figure 8 shows the comparison for v,=—1/2 and v varied
between 0 and 8, and for fixed v=1.5 and v 2 varied between
the blocked region to the degeneracy point (inset). We con-
sidered values I', ranging from 1072 to 10. Surprisingly, the
agreement between the analytical and the numerical calcula-
tions is very good also for I',<<1. Apparently, the current
depends very weakly on I', (apart from a trivial linear scal-
ing).

Concerning the v, dependence of the current, the inset of
Fig. 8 on top of the Monte Carlo results presents a compari-
son between (i) the analytical results (full line, partially hid-

0o LOT,=10
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*r=1 yo/2/5
// : T =T
0.15 ~mp_ o W -

coen v b b
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R, I/V
o
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— (@]
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M ]
“ ]
[ mlmumm

=
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K / -1
1 / ’,"'— ]
! 0.05 /T E
0.05 ; ]
h 0 S L 1
| —-0.8 -0.7 -06 -0
B v, («gate voltage)
0 A ! L !
0 2 4 6 8
v=eV/E,

FIG. 8. (Color online) Current as a function of v at v,=-1/2
from the analytical calculation (solid line), the weak coupling
theory (dashed line), and the Monte Carlo simulation (points). The
values of I', are 10 (empty square), 1 (triangle), 0.1 (cross), and
0.01 (filled square). Inset: Current as a function of v, for v=1.5.
The long dashed line is Eq. (7) for x=x,,.
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den by the Monte Carlo points), (i) the weak coupling re-
sults of Ref. 17 extrapolated to strong coupling (dashed line),
and (iii) expression (7) taken at x=x,, (long dashed line). For
v,>-v/2, the current flows through the device, inducing a
fluctuation of the position. The observed current is then the
average of Eq. (7) over the values of x visited by the island.
This average increases the current near the threshold, pro-
ducing the discontinuity, and reduces it near the degeneracy
point. Also, for the rms of the position, the analytical
estimate given above agrees with the numerical simulation:
for I', varying in the same range of Fig. 8, we find that

((x-x)?) ranges between 0.59 and 0.64, which compares
well with the analytical result of 0.628. The good agreement
between the analytical and Monte Carlo results indicates that
the analytical picture is accurate. It, thus, provides a simple
and faithful description of device dynamics.

V. PROBING THE BISTABILITY BY GATE VOLTAGE
MODULATION

The presence of the mechanical bistability can be experi-
mentally probed for v <1 by modulating the gate voltage
around —1/2: v,=~1/2+vg sin(wt). According to the picture
given before, if vZ< (1-v)/2, no current should flow since
the island remains in the same stable or metastable position
all the time: v, varies inside the dashed diamond of Fig. 2.
For vg> (1-v)/2, the island is instead always released from
the metastable state, and it is free to oscillate between the
two positions x=—1 and x=0. This implies that some current
can flow through the device. The resulting average current as
a function of vg is, thus, discontinuous at vgz(l—v)/ 2. In
order to verify this idea quantitatively, we resort to a Monte
Carlo simulation for this nonstationary situation. Results are
shown in Fig. 9 for v=1/2 and ®/w,=0.1. For vg>(1
—v)/2=1/4, we find that the current is one electron per
cycle, regardless of the value of I',,. The value of the discon-
tinuity depends instead strongly on I',. For I',>1, many
electrons can flow during the swing of the oscillator between
the two stable solutions. In the opposite limit of I')<<1, the
discontinuity is strongly reduced. Nevertheless, also in this
case, the nanomechanical nature of the current can be probed
by studying the average current as a function of the external
frequency w/w,. The inset shows the frequency dependence
of the current at the threshold (U§=1'05/ 4) for large and
small I',. In both cases, dips are present when w/w,=0.5, 1,
or 2, indicating the resonant response of the mechanical de-
gree of freedom.
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FIG. 9. (Color online) Average current response to an oscillating
gate voltage v,=—1/2+vg sin(wr) as a function of vy. v=1/2 and
o/ w,=0.1 (same symbols as in Fig. 8). The arrow indicates the
threshold to the conducting region. Inset: Frequency dependence of
the average current for v;=1.05 the threshold value. Structures at
w/w,=0.5, 1, and 2 are clearly visible.

VI. CONCLUSIONS

In conclusion, we have shown that the coupling to a clas-
sical mechanical degree of freedom can lead to a current
suppression at the degeneracy point. The effect is expected to
be quite a general feature of Coulomb blockade devices, thus
expected also, for instance, in classical or quantum supercon-
ducting devices. It is associated with a mechanical bistability
appearing for eV <Eg. We have shown how this can be de-
tected by using an ac gate voltage, and presented an analytic
theory that allows us to calculate with quantitative accuracy
the current in the whole conducting region (eV>Eg). A gap
at the degeneracy point has been already observed experi-
mentally in different nanomechanical devices.*?* The minia-
turization of the devices will allow us to increase further the
value of Eg. Our predictions can be useful to test whether the
observed phenomena are really related to nanomechanical
effects.
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