

Limits of Spin Squeezing in Bose-Einstein condensates

A. Sinatra, Y. Castin, E. Witkowska*, Li Yun, J.-C. Dornsetter

Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

* Institute of Physics, Polish Academy of Sciences, Warsaw

Grenoble, October $11^{\rm th}$ 2012

2 DEPHASING MODEL

1 INTRODUCTION

Plan

х

¢Ζ

squeezed

Spin squeezing and atomic clocks

₹Z

hω_{ab} |a>

₽γ

х

$$egin{aligned} S_x &= \sum_j \left(|a
angle \langle b| + |b
angle \langle a|
ight)_j /2, \ S_z &= \sum_j \left(|a
angle \langle a| - |b
angle \langle b|
ight)_j /2 \end{aligned}$$

Uncorrelated atoms

Squeezed state

$$\Delta \omega_{ab}^{\rm sq} = \xi \Delta \omega_{ab}^{\rm unc} = \frac{\xi}{\sqrt{N}T}$$

$$\boldsymbol{\xi^2} = \frac{\boldsymbol{N} \Delta \boldsymbol{S}_{\perp}^2}{\langle \boldsymbol{S}_{\boldsymbol{x}} \rangle^2}$$

uncorrelated atoms

Spin squeezing parameter Kitagawa, Ueda, (1993) ; Wineland (1994)

▶ v

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Spin squeezing schemes in atomic ensembles

• Light-Atoms interaction

Quantum Non Demolition measurement of S_z $\xi^2 = -3.0 dB = 0.5$ Vuletić PRL (2010)

 $\xi^2 = -3.4 dB = 0.46$ Polzik J. Mod. Opt (2009)

Cavity feedback $\xi^2 = -10 dB = 0.1$ Vuletić PRL (2010)

• Interactions in BEC

Stationary method for BEC in two external states

In a double well $\xi^2 = -3.8 dB = 0.42$ Oberthaler, Nature (2008)

In a double well on a chip Reichel PRL (2010)

Dynamical method for BEC

Feshbach $\xi^2 = -8.2 dB = 0.15$ Oberthaler, Nature (2010)

State-dependent pot. $\xi^2 = -2.5 dB = 0.56$ Treutlein, Nature (2010)

Dynamical generation of spin squeezing in a BEC

- At t < 0 all the atoms are in condensate *a*. At t = 0, $\pi/2$ -pulse
- Factorized state just after the pulse

$$|x
angle = rac{1}{\sqrt{N!}} \left(rac{a^{\dagger} + b^{\dagger}}{\sqrt{2}}
ight)^{N} |0
angle = \sum \ C_{N_{a},N_{b}} |N_{a},N_{b}
angle$$

• Expansion of the Hamiltonian Castin, Dalibard PRA (1997)

$$\begin{split} \hat{H}(\hat{N}_a, \hat{N}_b) &= E(\bar{N}_\epsilon) + \mu_a(\hat{N}_a - \bar{N}_a) + \mu_b(\hat{N}_b - \bar{N}_b) \\ &+ \frac{1}{2} \partial_{N_a} \mu_a (\hat{N}_a - \bar{N}_a)^2 + \dots \end{split}$$

Dynamical generation of spin squeezing in a BEC

Best squeezing time

Plan

Predictions at T = 0 without decoherence :

$$\xi_{
m best}^2 \sim rac{1}{N^{2/3}} \qquad \chi t_{
m best} \sim rac{1}{N^{2/3}}$$

No limit to the squeezing ?

Kitagawa, Ueda, PRA (1993) ; Sørensen et al. Nature (2001)

What limits spin squeezing for $N \to \infty$?

• Particle losses : Li Yun, Y. Castin, A. Sinatra, PRL (2008)

$$\min_{t,\omega,N} \xi^2 = \left[\left(\frac{5\sqrt{3}}{28\pi} \frac{m}{\hbar a} \right)^2 \left(\frac{7}{2} \kappa_1 \kappa_3 \right) \right]^{1/3}$$

 Non-zero temperature : A. Sinatra et al. PRL (2011) ; Frontiers of Phys. (Springer) (2011) ; Eur. Phys. Journ. D (2012)

 (\mathcal{A})

Spin squeezing scaling for $N \to \infty$

Uncorrelated atoms

Plan

Squeezed state

Heisenberg limit

• Two mode model $H_{NL} = \hbar \chi S_z^2$ Kitagawa Ueda

$$N o \infty, \quad \xi \sim rac{1}{N^{1/3}} \quad \Rightarrow \quad \Delta \omega^{
m sq}_{ab} \sim rac{1}{N^{5/6}}$$

- Two mode model with dephasing
- Two mode model with decoherence (one body-losses)
- Multimode description at finite temperature or zero temperature

$$N o \infty, \quad \xi \sim \xi_{min} \neq 0 \quad \Rightarrow \quad \Delta \omega_{ab}^{sq} \sim \frac{\xi_{min}}{\sqrt{N}}$$

Explicit calculations to obtain ξ_{min} (dephasing), ξ_{min} (losses), ξ_{min} (temperature), ...

・ロト・西ト・ヨト・ヨー シック

Two-mode dephasing model

HAMILTONIAN WITH A DEPHASING TERM

$$H = \hbar\omega_{ab}S_z + \hbar\chi\left(S_z^2 + DS_z\right)$$

Ferrini, Spehner, Minguzzi, Hekking, PRA 2011 Sinatra, Dornstetter, Castin, Frontiers of Physics 2012

D is a time-independent Gaussian random variable, $\langle D
angle = 0$

$$rac{\langle D^2
angle}{N}
ightarrow \epsilon_{
m noise}$$
 ; $N
ightarrow \infty$

Although the analytical solution holds $\forall \epsilon_{\rm noise},$ typically $\epsilon_{\rm noise} \ll 1$

• $\epsilon_{\text{noise}} \Leftrightarrow$ Fraction of lost particles

• $\epsilon_{noise} \Leftrightarrow Non-condensed fraction$ in the thermodynamic limit.

Spin dynamics and relative phase dynamics

$$a = e^{i\theta_a}\sqrt{N_a} \qquad [N_a, \theta_a] = i$$
$$b = e^{i\theta_b}\sqrt{N_b} \qquad [N_b, \theta_b] = i$$
$$a^{\dagger}b = \sqrt{N_a(N_b + 1)}e^{-i(\theta_a - \theta_b)}$$

Initially :
$$N_a - N_b \sim \sqrt{N}$$

and $\theta_a - \theta_b \sim \frac{1}{\sqrt{N}} \ll 1$

Spin components

$$S_x \simeq rac{N}{2}$$
; $S_y \simeq -rac{N}{2}(heta_a - heta_b)$; $S_z = rac{N_a - N_b}{2}$;

Heisenberg equation of motion for the phase difference

$$(\theta_a - \theta_b)(t) = (\theta_a - \theta_b)(0^+) - \chi t (2S_z + D)$$

• S_y becomes a copy of S_z : squeezing as $\chi t \gg \frac{1}{N} \leftrightarrow \frac{\rho g t}{\hbar} \gg 1$

• Phase spreading
$$(\theta_a - \theta_b) \sim 1$$
 as $\chi t \simeq \frac{1}{\sqrt{N}} \leftrightarrow \frac{\rho g t}{\hbar} \gg \sqrt{N}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Best spin squeezing and spin-squeezing time

$$\xi_{\min}^2 = \min$$
imum of ξ^2 over time

Best squeezing

 $\xi_{\min}^{\mathbf{2}} \stackrel{\mathbf{N} \to \infty}{\to} \frac{\langle \mathbf{D}^{\mathbf{2}} \rangle}{\mathbf{N}} = \epsilon_{\text{noise}}$

Close to best squeezing time

$$\xi^2(t_\eta) = (1+\eta)\xi_{\min}^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A different conclusion in the weak-dephasing limit

$$H = \hbar \chi \left(S_z^2 + \mathbf{D} S_z \right)$$

 $\langle D^2
angle
ightarrow {
m constant}$; $N
ightarrow \infty$

(e.g. $N \rightarrow \infty$ at fixed number of non-condensed particles or lost particles) cf. A. Sørensen PRA 2001

Best squeezing
$$\xi_{\min}^2 = \frac{3^{2/3}}{2} \frac{1}{N^{2/3}} + \frac{\frac{3}{2} + \langle D^2 \rangle}{N} + o\left(\frac{1}{N}\right)$$

Best time
$$\frac{\rho g t_{\min}}{\hbar} = 3^{1/6} N^{1/3} - \frac{\sqrt{3}}{4} + o(1)$$

We recover in this case the scaling of $H = \hbar \chi S_z^2$ plus corrections.

Particle losses: Monte-Carlo wave functions

• Interaction picture with respect to $H_{\rm nl} = \hbar \chi S_z^2$

$$c_{a} = e^{i\frac{H_{\mathrm{nl}}t}{\hbar}} \, a \, e^{-i\frac{H_{\mathrm{nl}}t}{\hbar}} \qquad \qquad c_{b} = e^{i\frac{H_{\mathrm{nl}}t}{\hbar}} \, b \, e^{-i\frac{H_{\mathrm{nl}}t}{\hbar}}$$

• Effective Hamiltonian and Jump operators for m-body losses

$$H_{\rm eff} = -\sum_{\epsilon=a,b} \frac{i\hbar}{2} \gamma^{(m)} c_{\epsilon}^{\dagger m} c_{\epsilon}^{m} \qquad \qquad S_{\epsilon} = \sqrt{\gamma^{(m)}} c_{\epsilon}^{m}$$

• Evolution of one wave function with k jumps

$$|\psi(t)
angle = e^{-iH_{
m eff}(t-t_k)/\hbar}S_{\epsilon_k}e^{-iH_{
m eff} au_k/\hbar}S_{\epsilon_{k-1}}\dots S_{\epsilon_1}e^{-iH_{
m eff} au_1/\hbar}|\psi(0)
angle$$

• Quantum averages

$$\langle \hat{\mathcal{O}}
angle = \sum_{k} \int_{0 < t_1 < t_2 < \cdots < t_k < t} dt_1 dt_2 \cdots dt_k \sum_{\substack{\{\epsilon_j\} \\ \langle \Box \rangle > \langle \Box \rangle < \langle \Box \rangle < \langle \Xi \rangle > \langle \Xi \rangle = \langle \Xi Z \rangle = \langle \Xi Z = \langle \Xi Z Z = \langle \Xi Z Z = \langle \Xi Z =$$

DEPHASING MODEL

LOSSES

TEMPERATURE

Jumps randomly kick the relative phase

INTRODUCTION

Plan

DEPHASING MODEL

Best squeezing and best time for $N \to \infty$

We use the exact solution for one-body losses : $\gamma t =$ fraction of lost particles at time t

$$N o \infty$$
 $\gamma t \equiv \epsilon_{
m loss} =
m const \ll 1$

For long times $\frac{\rho g t}{\hbar} \gg 1$

$$\xi_{\min}^2 = rac{3}{4} \left(rac{4}{3}rac{\hbar\gamma}{
ho g}
ight)^{2/3}$$
 $rac{
ho g t_{\min}}{\hbar} = rac{1}{\sqrt{rac{4}{3}\xi_{\min}^2}}$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Unified view between dephasing noise and losses

Particle Losses	Dephasing model
$ \psi(t) angle \propto \phi+rac{\chi t}{2}\mathcal{D} angle$	$(\theta_a - \theta_b)(t) = (\theta_a - \theta_b)(0^+) - \chi t \left[2S_z + D\right]$
${\mathcal D}$ from quantum jumps	D from a dephasing H
$\xi^2(t) \mathop{\simeq}\limits_{ ho gt/\hbar > 1} rac{\langle {\cal D}^2 angle}{N}$	$\xi^2(t) \mathop{\simeq}\limits_{ ho gt/\hbar>1} rac{\langle D^2 angle}{N}$
$\frac{\langle \mathcal{D}^2 \rangle}{N} = \frac{\gamma t}{3} = \frac{\epsilon_{\rm loss}}{3}$	$rac{\langle D^2 angle}{N} = \epsilon_{ m noise}$

Hamiltonian for component a (idem for b)

$$H = dV \sum_{\mathbf{r}} \psi_{a}^{\dagger}(\mathbf{r}) h_{0} \psi_{a}(\mathbf{r}) + \frac{g}{2} \psi_{a}^{\dagger}(\mathbf{r}) \psi_{a}^{\dagger}(\mathbf{r}) \psi_{a}(\mathbf{r}) \psi_{a}(\mathbf{r}).$$

Before the pulse, the system is in thermal equilibrium in a with $T \ll T_c$.

the pulse mixes the field a with the field b that is in vacuum :

$$\psi_{\boldsymbol{a}}(\mathbf{r})(0^+) = \frac{\psi_{\boldsymbol{a}}(\mathbf{r})(0^-) - \psi_{\boldsymbol{b}}(\mathbf{r})(0^-)}{\sqrt{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

After the pulse the two fields evolve independently

Bogoliubov description

Bogoliubov expansion : weakly interacting quasi-particles

$$H_a = E_0 + \sum_{\mathbf{k}
eq \mathbf{0}} \epsilon_k c^{\dagger}_{a\mathbf{k}} c_{a\mathbf{k}} + \mathbf{cubic terms} + \mathbf{quartic terms}$$

Spin components

$$S_{+} \equiv S_{x} + iS_{y} = dV \sum_{\mathbf{r}} \psi_{a}^{\dagger}(\mathbf{r})\psi_{b}(\mathbf{r})$$
 $S_{z} = \frac{N_{a} - N_{b}}{2}$

In the Bogoliubov description

$$S_{+}=e^{i(heta_{a}- heta_{b})}\left(rac{N}{2}+F
ight)$$

$$(\theta_a - \theta_b)(t) = (\theta_a - \theta_b)(0^+) - \frac{gt}{\hbar V} [(N_a - N_b) + \mathsf{D}]$$

D and *F* depend on Bogoliubov functions and occupation numbers of quasi particles $c_{ak}^{\dagger}c_{ak}$ after the pulse

Squeezing parameter evolution

Double expansion in $\epsilon_{\rm size} = 1/N \rightarrow 0$ and $\epsilon_{\rm Bog} = \langle N_{\rm nc} \rangle / N \rightarrow 0$.

Spin squeezing saturates to a finite value

Spin squeezing as a function of a renormalized time $(\tau \simeq
ho gt/(2\hbar))$

The limit $\langle D^2 \rangle / N$ depends on temperature and interaction strength, z

The limit of spin spin squeezing is smaller than the non condensed fraction

$$\xi_{\rm best}^2 = \frac{\langle \mathbf{D}^2 \rangle}{N} = \sqrt{\rho a^3} \quad F\left(\frac{k_B T}{\rho g}\right)$$

Spin squeezing and the non condensed fraction both divided by $\sqrt{\rho a^3}$

Unified view between dephasing noise and temperature

Dephasing model	Multimode $T \neq 0$
$(\theta_a - \theta_b)(t) \simeq -\chi t [2S_z + D]$	$(heta_a - heta_b)(t) \simeq -\chi t \left[2S_z + D_{ m th} ight]$
D from a dephasing H	$D_{ m th}$ from excited modes population
$\xi^2(t) \mathop{\simeq}\limits_{ ho gt/\hbar > 1} rac{\langle D^2 angle}{N}$	$\xi^2(t) \mathop{\simeq}\limits_{ ho gt/\hbar > 1} rac{\langle D_{ m th}^2 angle}{N}$
$rac{\langle D^2 angle}{N} = \epsilon_{ m noise}$	$\frac{\langle D_{\rm th}^2 \rangle}{N} = \sqrt{\rho a^3} F(k_B T / \rho g) \underset{k_B T > \rho g}{\sim} \epsilon_{\rm Bog}$

Consequence of the physics beyond Bogoliubov approximation

$$H_{a} = E_{0} + \sum_{\mathbf{k}\neq\mathbf{0}} \epsilon_{k} c_{a\mathbf{k}}^{\dagger} c_{a\mathbf{k}} + \mathbf{cubic \ terms} + \mathbf{quartic \ terms}$$

At long time the system thermalizes and Bogoliubov approximation fails

To test the validity of the perturbative treatment, we compare the analytic results with classical field simulations

DEPHASING MODEL

Analytics versus Numerics (non perturbative)

Best squeezing

Thermalization in simulations

$$\xi_{\rm best}^2 = \frac{\langle \mathbf{D}^2 \rangle}{N} = \sqrt{\rho a^3} \quad F\left(\frac{k_B T}{\rho g}\right)$$

 $\langle S_x
angle = \operatorname{Re} \left\langle \sum_{\mathbf{k}} b_{\mathbf{k}}^* a_{\mathbf{k}} \right\rangle \underset{t > t_{\mathrm{therm}}}{\simeq} \operatorname{Re} \left\langle b_{\mathbf{0}}^* a_{\mathbf{0}} \right\rangle.$

PRL (2011), long : EPJ ST (2012)

DEPHASING MODEL

LOSSES

TEMPERATURE

Result : Close to best squeezing time

At the thermodynamic limit, in the perturbative approach, $t_{\rm best}=\infty.$

Definition : $\xi^2(\mathbf{t}_{\eta}) = (\mathbf{1} + \eta)\xi_{\text{best}}^2$

$$rac{
ho { extsf{g}}}{\hbar} t_\eta = rac{1}{\sqrt{\eta \xi_{ extsf{best}}^2}}$$

DEPHASING MODEL

LOSSE

Rescaled thermalization time

At the thermodynamic limit, in the perturbative approach, $t_{\rm best} = \infty$.

Definition : $\xi^2(\mathbf{t}_\eta) = (\mathbf{1} + \eta)\xi_{ ext{best}}^2$

$$rac{
ho { extsf{g}}}{\hbar} t_\eta = rac{1}{\sqrt{\eta \xi_{ extsf{best}}^2}}$$

LOSSES

TEMPERATURE

Physical Interpretation

$$(heta_a - heta_b) = -rac{g}{\hbar V} t [N_a - N_b + \mathcal{D}]$$

LIMIT TO SPIN SQUEEZING

$$\mathbf{D} \neq \mathbf{0} \quad \Rightarrow \quad \xi^2 = \frac{\langle \mathbf{D}^2 \rangle}{N} \neq \mathbf{0} \quad \text{pour} \quad N \to \infty$$

From where this dephasing comes from ?

Hartree-Fock limit $k_B T \gg \rho g$, $\mathbf{D} = \mathbf{N}_{a\perp} - \mathbf{N}_{b\perp}$ (and $\langle D^2 \rangle = N_{nc}$):

$$(\theta_a - \theta_b)_{HF} = -\frac{g}{\hbar V} t \left[N_{a0} - N_{b0} + (1+1)(N_{a\perp} - N_{b\perp}) \right]$$

condensate + condensate $\leftrightarrow g$

condensate + non condensate $\leftrightarrow 2g$

Condensate squeezing vs Total field squeezing

 $k_B T /
ho g = 0.5, \ \langle N_{
m nc}
angle / N = 0.02, \ \sqrt{
ho a^3} = 1.32 imes 10^{-2}.$

DEPHASING MODEL

LOSSES

Numerical results in the trap : squeezing as a function of time

 $\mu/h\omega=7.19$, N=1.5 x 10⁵

Sac

æ

Plan INTRODUCTION DEPHASING MODEL LOSSES TEMPERATURE
Conclusions

- Spin squeezing with dephasing, with losses, or in a multimode theory at $T \neq 0$ is limited for $N \rightarrow \infty$. We calculate this limit microscopically.
- A simple **dephasing model** can effectively describe both the *lossy* and *finite temperature* case. In both cases the limit is given by a **fluctuating perturbation of the relative phase**.
- In the case at finite temperature the perturbation comes from thermal population of the excited modes and from the different interaction strength for c-c atoms and c-nc atoms.
- Condensate squeezing is much worse than the squeezing of the total field.

(日)、