Anderson Localization of Light and Ultrasound

<u>Bart van Tiggelen</u>

Université Joseph Fourier – Grenoble 1 / CNRS

Contents of the course

1. Introduction to localized waves

- Historical perspective
- Diffusion of waves and mean free path
- Localization in a nutshell

2. Theories of Localization

- Random Matrix theory
- Ab-initio methods
- Supersymmetric theory
- Selfconsistent theory of localization

3. Mesoscopic transport theory

- Dyson Green function
- Bethe-Salpeter equation
- Diffusion approximation
- Interference in diffusion

4. **From matter towards classical waves**

- Analogies and differences
- Mesoscopic regime for different waves
- Energy velocity of classical waves

Contents of the course

5. Enhanced backscattering as a precursor of strong localization

- Reciprocity principle
- Observation of enhanced backscattering of light and sound
- Return probability in infinite and open media

6 Speckles and correlations in wave transport

- Gaussian statistics
- Short and long-range correlations

7. Random laser

- Historical perspective
- Recent experiments and link with localization

8. Observation of Anderson localization in high dimensions

- 3D light localization
- 2D transverse localization
- Quasi 1D localization of microwaves
- 3D localization of ultrasound
 - dynamics in transmission
 - transverse confinement
 - selfconsistent theory
 - speckle distribution
 - multifractal wave function

Contents of the course

5. Anderson localization of noninteracting atoms in 3D

- Self-consistent Born approximation in speckle potential
- Phase diagram from selfconsistent theory
- Energy distribution of atoms

Coherent Backscattering of Light by Cold Atoms

G. Labeyrie, F. de Tomasi,* J.-C. Bernard, C. A. Müller, C. Miniatura, and R. Kaiser Institut Non Linéaire de Nice, UMR 6618, 1361 route des Lucioles, F-06560 Valbonne, France (Received 30 July 1999)

 $T_{\rm dir}(\mathbf{k}\,\boldsymbol{\epsilon},\{m\}\to\mathbf{k}^{\prime}\boldsymbol{\epsilon}^{\prime},\{m^{\prime}\})=(-1)^{\sum_{i}(m_{i}^{\prime}-m_{i})}T_{\rm rev}(-\mathbf{k}^{\prime}\boldsymbol{\epsilon}^{\prime*},-\{m^{\prime}\}\to-\mathbf{k}\,\boldsymbol{\epsilon}^{*},-\{m\}).$

Coherent backscattering with seismic waves in Auvergne

Larose etal, PRL 2004

Enhanced Backscattering in a magnetic field

$$T_{i\mathbf{k}j\mathbf{k}'}(\mathbf{B}) = T_{j-\mathbf{k}'i-\mathbf{k}}(-\mathbf{B})$$

$$\Psi_{i\mathbf{k}\to i-\mathbf{k}} (1\to 2\to\cdots n, \mathbf{B}) = \Psi_{i\mathbf{k}\to i-\mathbf{k}} (n\to\cdots 2\to 1, -\mathbf{B})$$

Erbacher, Lenke and Maret, EPL 1993

Enhanced Backscattering in strongly scattering samples

Incoherent background

Coherent background

CBS

Enhanced Backscattering in strongly scattering samples

V.c How much extra energy returns at to the source by constructive interference?

Something is wrong with diffusion picture at large times Enhanced backscattering is precursor

.....and in open quasi 1D wave guide ?

$$= \frac{1}{Ak^2} \frac{\ell}{L} \equiv \frac{1}{g}$$

Number of transverse channels N

Something is wrong with diffusion picture for g < 1 (L > N ℓ)

.....and in open d-dimensional media ?

interference energy/Source =
$$v_E \int_0^{L^2/D} dt \left(\frac{\lambda}{2\pi}\right)^{d-1} \frac{1}{L^d}$$

$$= \frac{\mathbf{v}_E}{k^{d-1}DL^{d-2}}$$

- d=2 critical dimension for localization
- velocity cancels
- d>2: Set of points where this equals 1

$$D \propto v_E \frac{\ell^{d-1}}{L^{d-2}} \qquad k\ell \approx 1$$

A critical point in d>2 near ke=1 with scale dependent diffusion?

Localization in open media ?

 $N(E) \approx L^{d} \int \frac{d^{d} \mathbf{k}}{(2\pi)^{d}} \delta \left(E - \frac{\hbar^{2} k^{2}}{2m} \right)$ Thouless number $\frac{k_F^{d-1}DL^{d-2}}{v_F} = \frac{k_F^{d-1}L^d}{\hbar v_F} \hbar D/L^2 = \begin{cases} N(E)\delta E_{\text{Thouless}} = \frac{\delta E_{\text{Thouless}}}{\Delta E_{\text{level}}} \\ \rho(E)D(E)\frac{L^{d-1}}{L} = \frac{G}{e^2/h} \end{cases}$ dimensionless conductance g **Einstein relation**

Onset of Anderson localization

return proba = 1 \iff level width = level spacing \iff g=1

Thouless, Edwards, 1972

Scaling theory of localization

« Gang of four », 1980

V. Enhanced Backscattering as a precursor of localization

• conclusion: near g=1 constructive interferences dominate wave transport

VI. Speckles and correlations

$$C_{ij} \equiv \langle \Psi_i | \Psi_j^* \rangle$$

 $\mathbf{P}_i \ \mathbf{\Psi}_i > \mathbf{From diffusion equation}$

Speckles of Micro-waves in Quasi 1D media

Phase statistics in diffuse regime

$$P(E_{1},...,E_{K}) = \frac{1}{\pi^{K} \det C} \exp\left(-\sum_{i=1}^{K} \bar{E}_{i}C_{ij}^{-1}E_{j}\right)$$

$$\longrightarrow P\left(\hat{\phi}' = \frac{\phi'}{\langle \phi' \rangle}\right) = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2}};$$

$$P\left(\frac{d\phi}{d\omega}\right)$$

$$E_{2}^{(0)} = \frac{1}{2} \frac{Q}{[Q + (\hat{\phi}' - 1)^{2}]^{3/2};$$

$$E_{2}^{(0)}$$

VI.b Long-range and nonGaussian intensity correlations

Observation of C2 and C3 in dynamic colloids (DWS)

Maret, Scheffold, 1998

g=100, D= 4 um

Observation of C2 and C3 in microwave polarization

VI.c Fluctuations of transmission and transmittance

$$\left\langle \left(\delta T_{a}\right)^{2} \right\rangle = \left\langle T_{ab} \right\rangle^{2} \sum_{bb'=1}^{N} \left(\delta_{bb'} + \frac{1}{g} \left(1 + \delta_{bb'}\right) + \frac{1}{g^{2}} \right)$$

$$= \left(\frac{\ell}{NL} \right)^{2} \left(N + \frac{L}{N\ell} N^{2} + \left(\frac{L}{N\ell}\right)^{2} N^{2} \right)$$

$$= \left\langle T_{a} \right\rangle^{2} \left(\frac{1}{N} + \frac{L}{N\ell} + \left(\frac{L}{N\ell}\right)^{2} \right)$$

$$N >> 1, g >> 1$$

$$\frac{\left\langle \left(\delta T_{a}\right)^{2} \right\rangle}{\left\langle T_{a} \right\rangle^{2}} \propto \frac{1}{g}$$

DMPK equation for Q1D
$$P(s_{ab}) = \int_0^\infty \frac{ds_a}{s_a} P(s_a) \exp(-\frac{s_{ab}}{s_a})$$

$$P(s_a) = \int_{-i\infty}^{i\infty} \frac{dx}{2\pi i} \exp\left(xs_a - \Phi(x)\right),$$

«in a fixed speckle patteren (T_a fixed), the field Is Gaussian distributed »

$$\Phi(x) = g \ln^2(\sqrt{1 + x/g} + \sqrt{x/g})$$

Fluctuations of transmission and transmittance

 T_{ab}

$$\left\langle \left(\delta T\right)^2 \right\rangle = \left\langle T_{ab} \right\rangle^2 \sum_{aa'bb'=1}^N \left(\delta_{aa'} \delta_{bb'} + \frac{1}{g} \left(\delta_{aa'} + \delta_{bb'} \right) + \frac{1}{g^2} \right)$$

$$= \left(\frac{\ell}{NL} \right)^2 \left(N^2 + \frac{L}{N\ell} N^3 + \left(\frac{L}{N\ell} \right)^2 N^4 \right)$$

$$= \left(\left(\frac{\ell}{L} \right)^2 + \frac{\ell}{L} + 1 \right) \qquad \left\langle \delta T^2 \right\rangle \propto 1$$

$$\text{Universal conductance formula of the set of the set$$

Universal conductance fluctuations (never observed with light)

VI. Speckles and correlations

<u>conclusion</u>: near g=1, fluctuations in transmission are are strong and non Gaussian

VII. Random Laser

Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders

C. Gouedard, D. Husson, and C. Sauteret

Commissariat à l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve St. Georges, France

E Auzel

Centre National d'Etude des Télécommunications, France Telecom, 196, Avenue Henri-Ravera, 92220 Bagneux, France

A. Migus

Laboratoire d'Optique Appliquée, Centre National de la Recherche Scientifique unité de Recherche Associée 1406, École Nationale Supérieure des Techniques Avancées—Ecole Polytechnique, 91120 Palaiseau, France

Received August 10, 1992; revised manuscript received July 13, 1993

→ Leaky modes overlap

Threshold depends on mean free path

Letokhov, 1968

$$\begin{aligned} & \text{Pump light} & \frac{\partial W_G(\vec{r},t)}{\partial t} = D\nabla^2 W_G(\vec{r},t) - \sigma_{abs} v[N_t - N_1(\vec{r},t)] W_G(\vec{r},t) + \frac{1}{l_G} I_G(\vec{r},t), \\ & \text{Probe light} & \frac{\partial W_R(\vec{r},t)}{\partial t} = D\nabla^2 W_R(\vec{r},t) + \sigma_{em} v N_1(\vec{r},t) W_R(\vec{r},t) + \frac{1}{l_R} I_R(\vec{r},t), \\ & \text{Amplified stimulated}_{emission} & \frac{\partial W_A(\vec{r},t)}{\partial t} = D\nabla^2 W_A(\vec{r},t) + \sigma_{em} v N_1(\vec{r},t) W_A(\vec{r},t) + \frac{1}{\tau_e} N_1(\vec{r},t), \\ & \text{Lasing}_{evel population} & \frac{\partial N_1(\vec{r},t)}{\partial t} = \sigma_{abs} v[N_t - N_1(\vec{r},t)] W_G(\vec{r},t) - \sigma_{em} v N_1(\vec{r},t) [W_R(\vec{r},t) + W_A(\vec{r},t)] - \frac{1}{\tau_e} N_1(\vec{r},t). \end{aligned}$$

Basic questions

- Is this « random laser » really a laser
 - (or just stimulated emission amplified by scattering ASE)?
- What happens beyond diffuse threshold?
- Is it possible to use one single mode to lase?
- How does the random cavity look like? Localized, extended?

What is a laser anyway, and what makes a laser « random »?

rhodamine 640 dye solutions with ZnO nanoparticles

Photon statistics

Nature of lasing modes

Van der Molen, Lagendijk, 2007

Nature of lasing modes

Localized states act as inert lasing cavities

Sebbah, Vanneste, 2002

VIII. Observation & Modelling of Anderson Localization in high dimensions

VIII.a 3D Localization of Light

VIII.a 3D Localization of Light

VIII.a 3D Localization of Light

$$\partial_t I(\mathbf{r}, t) - D(t)\Delta I(\mathbf{r}, t) = S\delta(t)\delta(\mathbf{r})$$

 $T(t) \propto \exp\left[-\frac{1}{L^2}\int_0^t dt D(t)\right]$

Maret etal, EPL 2006

VIII.b 2D Transverse localisation of light

VIII.b 2D Transverse localisation of light

$$\left(\frac{\omega^2}{c_0^2} - k^2 + \delta \varepsilon(\mathbf{\rho}) \frac{\omega^2}{c_0^2}\right) \Phi(z, \mathbf{\rho}) + \Delta_{\rho} \Phi(z, \mathbf{\rho}) + \partial_z^2 \Phi(z, \mathbf{\rho}) = \frac{2k}{i} \partial_z \Phi(z, \mathbf{\rho})$$
$$\left|\frac{\partial_z^2 \Phi}{\partial_z}\right| \ll \left|k \partial_z \Phi\right|$$

Paraxial approximation

2D Schrödinger equation with « time » z : localization strongest at small « energies » → Wave packet transversly localized

De Raedt, Lagendijk and De Vries 1988,

VIII.b 2D Transverse localisation of light

 $\delta \varepsilon \approx 10^{-4}$! but $\omega/c_0 \approx k$

Data: A.Z. Genack (2004); theory: Skipetrov and van Tiggelen

VIII.c Quasi 1D localisation of microwaves

VIII.d 3D localisation of ultrasound

Diffuse $\lambda_p = 9 mm$, $\ell = 2 mm$ Localized $\lambda_p = 2 mm$, $\ell = 0.6 mm$ $k_p \ell = 1.4$ $k_p \ell = 1.4$ Page , Skipetrov, Van Tiggelen, Nature Physics 2008

bvt3 bart van tiggelen; 09/01/2008

Time-dependent transmission of ultrasound

transverse confinement of ultrasound

Diffuse: $\langle \rho^2 \rangle = 4Dt$ transition: $\langle \rho^2 \rangle \sim L^2$, not $t^{2/3}$ Localized: $\langle \rho^2 \rangle \sim L\xi$ bvt4 bart van tiggelen; 09/01/2008

Dynamics of Localization in finite open media

Skipetrov & Van Tiggelen, PRL 2004,2006

3D Transverse localisation of ultrasound

3D Transverse confinement of ultrasound

transverse confinement of ultrasound

Transverse position

Speckle distribution of transmission

Multifractality of wave function

extended critical localized multifractal

$$\Delta(q) = \gamma q (1-q) \Leftrightarrow f(\alpha) = -\frac{1}{4\gamma} (\alpha - d - \gamma)^2$$
Anomalous gIPR Lognormal PDF

Multifractality of wave function

Faez, Page, Lagendijk and Van Tiggelen (PRL 2010)

Multifractality of wave function

Lognormal PDF

Localized ultrasound

$$\Delta_q \approx 0.21 \; q(1 - q)$$

is

$$\gamma \propto \frac{1}{g} F(L/\xi(E))$$

?

VII.d Observation of 3D ultrasound Localization

- Transverse confinement: D(r)!
- Anomalous dynamic transmission
- Giant non-poissonian fluctuations g < 1
- Multifractal wave function
- **?** 1/t² reflection (in progress)
- **?** Critical exponent
- **?** Critical LDOS fluctuations (in progress)

3D, localized half space : kl=0.7

1D seismology : Sheng Papanicolaou, 1987 Q1D (DMKP) Titov, Beenakker, 2000

Preliminary observation of infinite range correlations (fluctuations of LDOS)

Hildebrand, Page, Skipetrov, Van Tiggelen

IX. Anderson localization of noninteracting cold atoms

Our disordered potential: laser speckle

IX.a Q1D BEC in random potential

Palaiseau group, Firenze group PRL oct 2005

localization in 1D speckle potential

$$V(z) = \sigma_R^{-1} \left(\frac{\epsilon_R}{k\sigma_R}\right)^n f_n(k\sigma_R),$$

 $T(L) = \exp(-\gamma L)$

Lugan etal 2009

Experimental verification of localized kicked cold atoms in 3D

Experimental observation of the Anderson transition with atomic matter waves

Julien Chabé¹, Gabriel Lemarié², Benoît Grémaud², Dominique Delande², Pascal Szriftgiser¹ & Jean Claude Garreau¹ **PRL**, 2008

Localization of noninteracting cold atoms in 3D white noise

Skipetrov, Minguzzi, BAvT, Shapiro PRL, 2008

Average density profile of atoms at large times Probability of quantum diffusion

$$\left| \left\langle n(\mathbf{r},t) \right\rangle = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \left| \phi_{\mu}(\mathbf{k}) \right|^{2} \int_{-\infty}^{\infty} dE A(E,\mathbf{k}) P_{E}(\mathbf{r},t)$$
Distribution of
initial velocities
mv = \hbar k
$$\frac{1}{\text{volume}} \left\langle \mathbf{k} \left| \delta \left(E - \hbar^{2} k^{2} / 2m - V(\mathbf{r}) \right) \mathbf{k} \right\rangle = -\frac{1}{\pi} \text{Im} \frac{1}{E - \hbar^{2} k^{2} / 2m - \Sigma(E,k)}$$

$$\langle \delta V \rangle = 0 \; ; \langle \delta V (\mathbf{r}) \delta V (\mathbf{r'}) \rangle = 4 \pi U \; \delta (\mathbf{r} - \mathbf{r'})$$

Mean free path: $\ell = \left(\frac{\hbar^2}{2m}\right)^2 \frac{1}{U} \Longrightarrow E < \left(\frac{2m}{\hbar^2}\right)^3 U^2$ localized

Density profile of atoms at large times

Skipetrov, Minguzzi, BAvT, Shapiro PRL, 2008

$$n(\mathbf{r},t) = n_{\text{loc}}(\mathbf{r}) + \Delta n_{AD}(\mathbf{r},t)$$

localized

anomalous diffusion

$$\xi(\varepsilon) \propto \frac{1}{(\varepsilon_c - \varepsilon)^{\nu}} \Longrightarrow n_{\text{loc}}(\mathbf{r}) \propto \frac{1}{r^{3 + 1/\nu}}$$

$$D(\mathcal{E}) \propto (\mathcal{E} - \mathcal{E}_c)^s \Longrightarrow \Delta n_{AD}(\mathbf{r}, t) \propto \frac{1}{r^{3-2/s} t^{1/s}}$$

Cold atoms in a 3D speckle potential

$$\langle V(\mathbf{r}) \rangle = \sqrt{U} \qquad \langle \delta V(\mathbf{r}) \delta V(\mathbf{r'}) \rangle = U \operatorname{sinc}^2(\Delta r / \zeta)$$

$$\frac{\hbar}{m\zeta} = 7 \, mm/s \qquad \frac{\hbar}{3m} = 600 \, \mu m^2/s \qquad \text{Mott minimum}$$
$$\frac{\hbar^2}{2m\zeta^2} = E_{\zeta} \approx \sqrt{U} \approx \mu = h \times 220 \, Hz \qquad \zeta \approx \ell \approx 0.3 \, \mu m$$

Self-consistent Born Approximation

$$G(E, p) = \frac{1}{E - p^2 / 2m - \sqrt{U} - \Sigma(E, p)}$$

$$\Sigma(E, p) = \sum_{\mathbf{p}'} \frac{S(\mathbf{p} - \mathbf{p}')}{E - p'^2 / 2m - \sqrt{U} - \Sigma(E, p')}$$

$$D_{\text{Drude}}(E) = \frac{1}{3} \frac{\hbar}{m} \frac{\sum_{p} p^2 2 \operatorname{Im}^2 G(E, p)}{\sum_{p} -\operatorname{Im} G(E, p)} = \frac{1}{3} \frac{\hbar}{m} \times "k\ell"$$

$$D_{\text{Boltz}}(E) = \frac{D_{\text{Drude}}(E)}{1 - \langle \cos \theta \rangle} >> D_{\text{Drude}}(E)$$

Selfconsistent theory of localization

$$D(E) \approx D_{\text{Boltz}}(E) \left\{ 1 - K(E) \right\}$$

$$K(E) = -\frac{6}{\left[\sum_{\mathbf{p}} p^2 \operatorname{Im}^2 G(E, p)\right]^2} \sum_{\mathbf{pp'}} \operatorname{Im}^2 G(E, p') \frac{\mathbf{p} \cdot \mathbf{p'}}{(\mathbf{p} + \mathbf{p'})^2} \operatorname{Im}^2 \Sigma(E, \frac{1}{2} |\mathbf{p} - \mathbf{p'}|) |G(E, p)|^2$$

Is 3D cold atoms are delocalized below « sea - level » but above percolation threshold

Cold atoms in 3D speckle

$$N_{\mu}(E) = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} A(E,k) \left|\phi_{\mu}(k)\right|^{2}$$

Fraction of localized atoms

$$f_{loc}(\mu) = \int_{0}^{E_{c}} dE N_{\mu}(E)$$

*

Anderson Localization is still a major theme in condensed matter physics, full of surprises

New experiments (in high dimensions and with « new » waves) exist and are underway.

Thank you for your attention

 B.A. van Tiggelen, Les Houches 1998
 Lagendijk, Van Tiggelen, Wiersman/ Aspect, Inguscio Physics Today, august 2009

•C. Müller, D. Delande, Les Houches 2010 http://arxiv.org/abs/1005.0915

Mesoscopic physics for absolute beginners:

All waves behave in a similar way

L. Brillouin, 1960