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Weak Localization of Short Pulses
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We consider the phenomenon of weak localization of a short wave pulse
in a quasi-1D disordered waveguide. We show that the long-time decay of the
average transmission coefficient is not purely exponential, in contradiction
with predictions of the diffusion theory. The diffusion theory breaks down
completely for times exceeding the Heisenberg time. We also study the
survival probability of a quantum particle in a disordered waveguide and
compare our results with previous calculations using the super-symmetric
nonlinear sigma model.
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1. Introduction

Since the prediction of Anderson [1] that sufficiently strong disorder can
block propagation of waves and lead to localization of wave energy in space, ex-
tensive efforts have been made to observe this “Anderson localization” for waves of
various nature (Schrédinger, acoustic, electromagnetic, etc., waves) [2]. One par-
ticular experiment that makes localization evident is sending a short wave pulse
into a disordered medium and then observing its evolution in course of time. If the
disorder is weak, the wave will propagate out from the source by diffusion (at least
at distances exceeding the mean free path ¢) and its energy will be eventually dis-
tributed over the entire space, being negligible at any given point. If, in contrast,
the disorder is sufficiently strong, the scattering will prevent the wave from going
away from the source and the energy of the wave will remain localized within a vol-
ume of linear size ¢ around the source. The length scale £ is called the localization
length. The experiment to “detect” localization seems then trivial: just wait long
enough and examine which of the above scenarios is realized. In reality, however,
the situation is complicated by the fact that real disordered samples are finite in
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size and therefore, localized or not, the wave leaks out from the sample through
its boundaries, making the “final” (i.e. corresponding to very long times) state
of the system identical for both weak and strong disorder’. This implies that in
order to distinguish between diffuse and localized regimes, one has to analyze the
leakage itself, and not only the final state of the system. A correct analysis of the
leakage requires a careful treatment of boundary conditions. Indeed, the leakage
happens through the boundaries and hence the existence of the latter cannot be
neglected.

The purpose of this paper is to present a relatively simple theoretical model
that captures the main features of the diffusion-localization transition correctly
accounting for boundary conditions at the surface of disordered sample. We then
apply the model to describe the “weak localization” phenomenon, a precursor
of Anderson localization that can be observed in nominally diffusive disordered
samples. We limit ourselves to the case of the so-called “quasi-1D” experimental
geometry that is frequently encountered in experiments and is extensively stud-
ied theoretically. A quasi-1D sample is an open cylindrical tube (waveguide) of
length L > ¢, diameter d such that A < d < ¢ (X is the wavelength), and base
surface A = wd?/4. The small diameter of the tube allows one to neglect the
transverse variation of the average intensity of diffuse wave, largely simplifying
the derivations. The tube has reflecting walls but open ends, and it is filled with
a disordered medium (e.g. a mixture of transparent and scattering balls in the
case of microwaves). A short wave pulse is emitted at a position 2’ inside the tube
at time t = 0 and the intensity of the wave is measured at some other position
z at time t. In typical experiments, a wave is incident on the tube from outside
and the transmitted wave is measured. This corresponds to z’ =~ ¢ (since £ is a
typical distance needed to convert the incident ballistic wave to the diffuse wave
inside the sample) and z = L. The following parameters are commonly used when
light scattering in quasi-1D disordered waveguides is considered: the number of
transverse modes N = k2A /47 > 1 (k = 2m/\)}, the dimensionless conductance
g = (4/3)N{¢/L and the localization length £ = (2/3)N{¢ > ¢.

2. Self-consistent theory of localization

We now consider a short wave pulse incident on the waveguide at z = 0
(in this case we set 2z’ = ) or produced inside the waveguide (any z’ between 0
and L) at time ¢ = 0. To find the average transmission coefficient T'(¢) of the tube
measured at z = L, we apply the self-consistent approach developed in Ref. [3]
and based on the self-consistent theory of localization [4]. It amounts to write a
diffusion equation for the intensity Green function C(z, 2, 2):

f Absorption of waves by the medium has the same effect.
#We deal with scalar waves here. For vector (e.g. electromagnetic) waves, the number
of transverse modes is a factor of two larger due to two possible polarizations of the wave.
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supplemented with a self-consistent equation for the position- and frequency-

C(z,2/,02)=06(z—-2) (1)

-dependent diffusion coefficient:
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and with the boundary conditions:

/ . D(ng)i ’ _ _
C(z,2',2) — 2 Dy dzC(z,z,(})antzfo, (3)
C(z,2',02)+ ZOD(z, 2) iC’(z, 2, 02)=0at z=L. (4)
DO dz

Here Dy = v{/3 is the “bare” value of the diffusion coefficient (v is the transport
velocity) and zp ~ £ is the so-called “extrapolation length” that allows one to
account for reflection of diffuse waves at the sample boundaries. Equation (2)
describes the renormalization of the diffusion coefficient due to the interference of
time-reversed trajectories inside the disordered medium. This renormalization has
the same physical origin as the phenomenon of coherent backscattering [5]. Let
us note that the renormalized diffusion coeflicient D(z, £2) appears not only in the
diffusion equation (1) but in the boundary conditions (3, 4) as well.

3. Diffusion approximation

If g — oo (or, equivalently, if L/§ — 0), waves propagate by diffusion and
the second term on the right-hand side of Eq. (2) can be neglected. We then
have D(z, 2) = Dy, and by solving the diffusion equation (1) with the boundary
conditions (3, 4) we find

Cof31',2) = 5= binh(r2/L) +1(z0/L) cosh(12/ 1)

X [sinh(y(1 = 2> /L)) + 7(20/ L) cosh(7(1 — 2 /L))]

x [(14~%(20/L)?) sinh~y + 2v(z0/L) cosh’y]il, (5)

where we use the subscript “0” to denote the case of bare diffusion, z. = min(z, 2’),
zs = max(z,2'), and v = (—i2L?/Dy)"/?.

We now consider very long waveguides (L > ¢) and neglect the extrapolation
length zg ~ ¢ < L in Eq. (5). This yields

Colz, 2, 2) = Dio bmh(w</L);;rilfh(z(1 2 /L) (6)

The average transmission coefficient is then found as

sinh(yz'/L)

sinh

fo(\(z) = _DO%CO(Z = L,Z’/7 .Q) =
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where tp = L? /72Dy is the time of wave diffusion through the waveguide. To eval-
uate the integral in Eq. (8) we used the fact that the integrand Ty(£2) exp (—if2t)
has simple poles on the imaginary axis of the complex plane at 2 = —in?72D,/L?
and applied the residue theorem. Using Eqs. (7) and (8) we can find the steady-
-state transmission coefficient:

Am%@azﬁm:m )

At long times t > tp only the first term contributes appreciably into the sum

Z/

of Eq. (8) and the average transmission coefficient decays exponentially with time:
To(t) =~ (2 Do/L?)sin(m2’ /L) exp(—t/tp). This exponential decay is a hallmark
of diffusion behavior and it is often used to test for diffusion behavior of waves
in experiments. The diffusion constant Dy can be extracted from the measured
average transmission as

L? d

4. Weak localization

However, recent experiments [6] show that even in the diffuse regime (g > 1)
deviations from the simple exponential decay of the average transmission coefficient
can be detected. This phenomenon is called weak localization and it has also
an impact on the steady-state (2 = 0) transmission coefficient of a disordered
waveguide. In the latter case, however, the phenomenon is difficult to observe
because one has to introduce some additional factor (e.g. magnetic field) to brake
the time-reversal symmetry, thus preventing the renormalization of the diffusion
constant, to be able to compare transmission coefficients in the presence and in the
absence of the time-reversal symmetry. We now show how our theoretical model
can be used to describe the weak localization phenomenon for short wave pulses.

As far as ¢ remains much larger than unity, we can use 1/g as a small
parameter and only keep the terms of order 1/¢g (and drop the terms of order
1/¢% 1/¢, ...) in Egs. (1) and (2). This amounts to write

D(z, 2) =D0+§D1(2’, 0), (11)

1
C(z,2',02)=Co(z,7,02) + 501(2, 2, 0), (12)
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7(2) = To(2) + ;fm), (13)

() = To(t) + éTl(t). (14)

Substituting these into Egs. (1) and (2) and collecting the terms of order 1/g we
find

D
Di(z,02)=—-4 7 Co(z, 2, 02), (15)
, a2 , d d ,
—if2 — DO@ Cl(Z,Z 7.9) = % Dl(Z, Q)ECO(Z,Z 5 .Q) . (16)

We now note that Eq. (16) with the delta-function 6(z — 2’) on the right-hand
side is also obeyed by Cy(z,2', 2). Cy(z, 2, 2) is therefore the Green function of
Eq. (16). The solution of the latter can then be written as

Ci(z,2,02) =
D2 [t d d
—47/0 dz”C’o(z7z”,Q)dz” [CO(Z”,Z”,Q)dz,,CO(ZI/,Z’7Q)] .
The integral in Eq. (17) can be evaluated, and for ¢ > tp we obtain
1 ) ot t\?
T(t) =To(t) {1+ — |ao(z) + o1 (z) — + a2 ; (18)
g tp tp
D(t 1 4
where
N3 (3 Ve (o2 (12 Z
ao(z)fzm_ 1 3L sin 27rL 1 1 7 3+L , (20)
3 2!
ai(2) = ~53 cos (27TL> , (21)
1
Qg = ) (22)
and D(t) is defined by analogy with Eq. (10)
D(t) = L InT(t) (23)
w2 dt '

5. Discussion

Equations (18) and (19) are the main results of this paper. They lead us to
the following important conclusions. First, the decay of the average transmission
coefficient T'(t) is not purely exponential and hence, strictly speaking, the prop-
agation of waves in a disordered waveguide does not obey diffusion laws. This
is manifested by the time dependence of the diffusion coefficient (19) which has
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to be time-independent for the purely diffusive propagation. Second, the diffu-
sion model with a constant, time-independent diffusion coefficient can be a good
approximation only for short times ¢ <« gtp. It is easy to show that ty = gip
is actually a characteristic time scale that is known as the “Heisenberg time” in
the field of quantum chaos. The Heisenberg time is the typical time needed for
a wave (or quantum particle) to visit the whole system (the whole waveguide, in
our case). After the Heisenberg time, the wave has to pass by those parts of the
sample that it has already visited before. The wave trajectory then crosses itself.
Such crossings are precisely the phenomenon that renormalizes the diffusion coef-
ficient and that is accounted for by the second term in Eq. (2). Apparently, our
theoretical model does not allow us to treat the situations when such crossings be-
come dominant. We cannot therefore treat times exceeding the Heisenberg time.
Another way to understand this limitation of our theoretical approach is to note
that the Heisenberg time is also the inverse of the typical spacing between the
modes of a closed sample. For times exceeding ty the mode structure of the wave
field becomes important (i.e. one resolves individual modes). This mode structure
is not included in our model and hence we cannot treat this regime correctly.

Tt is worth noting that ag(z’) and aq(2’) in Egs. (18) and (19) depend on the
position 2’ of the source of waves and can even change the sign when the source
position is changed. For example, when the wave is incident on the waveguide
from outside (as in the experiments of Chabanov et al. [6], we set 2’ ~ ¢ and find
ag = —3/4 and a; = —3/272 for L > ¢. On the other hand, if the source is placed
in the middle of the waveguide, we find ag = —7/16 and a7 = 3/27%. In contrast,
the value of as is not sensitive to the source position. This illustrates that for long
times the waves explore the whole sample and have only a limited memory about
the position of their source.

The decrease in the diffusion coefficient with time predicted by Eq. (19) has
been recently observed in microwave experiments by Chabanov et al. [6]. Our the-
oretical model allows a reasonably good description of the experimental results [3].
It is also worthwhile to note that a result similar to Eq. (18) has been obtained by
Mirlin [7] who studied the “survival probability” P(t) of a quantum particle in a
quasi-1D disordered waveguide using the super-symmetric nonlinear sigma model
and found

I P(t) = - (1 _ lt) (24)

ip m2gtp
for orthogonal symmetry (8 = 1), corresponding to the case of preserved time-
-reversal symmetry considered here. To calculate P(¢) in the framework of our
self-consistent approach we note that the reason for the survival probability to dif-
fer from 1 is the leakage of wave energy through sample boundaries. This leakage
is quantified by the transmission coefficient T'(t) and we therefore find
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dP(t)
dt

where the bar denotes averaging over the position of the source 2z’ and the nu-
merical factor 2 is the number of (identical) open boundaries. For bare diffusion
(9 — o0) we substitute Eq. (8) into Eq. (25) and using the “initial” condition
P(0) =1 find

Py(t) = % exp (—;) and —InPy(t) = % —1In (7r82> (26)
for t > tp. As expected, the decay of Py(t) is purely exponential. Let us note that

— —27(1), (25)

instead of using the condition P(0) =1 we could arrive at the same result (26) by
requiring P(cc0) = 0.

Let us consider now finite but large g. Substituting Eq. (18) into Eq. (25) and
performing the integration yields P(¢) up to an additive constant. The condition
P(0) = 1 cannot be used to determine this constant (as for ¢ — o0) because
Eq. (18) only holds for ¢t > tp and does not apply for ¢t = 0. We therefore use the
condition P(c0) = 0 to determine the additive constant and obtain

8 t 1.t ()
P(t) = — —— ) {1+ = — — 2
(t) 7T2exp< tD>{ +3 ao+a1tD+a2(tD)]}, (27)

where a9 = 3/m2 — 3/8, a; = 5/272, and ay = 1/72. This is equivalent to

(- - )-p(2)3 (P oo

If we drop the time-independent terms in the square brackets (which seems
to be done in Eq. (24)), the resemblance between Eqs. (24) and (28) becomes
evident. Indeed, the numerical coefficient —1/72¢ in front of (t/tp)? is the same
in both cases. On the other hand, the coefficients in front of ¢/tp differ by 5/272¢.
It is interesting to note that the coefficients in front of (¢/tp)? and t/tp do not
depend on the exact condition (P(c0) =0, P(0) =1 or P(t — 0) = Py(t — 0))
that we employ to determine the additive constant when integrating Eq. (25).

6. Conclusions

We have presented a theoretical model that enables us to describe the phe-
nomenon of localization for short wave pulses in disordered media, correctly ac-
counting for boundary conditions on the sample surface. The model is based on
a diffusion equation with a self-consistently renormalized diffusion coefficient. Us-
ing this model, we calculate the time-dependent transmission of waves through a
disordered quasi-1D waveguide and the survival probability of a wave (or quan-
tum particle) in the waveguide in the diffuse regime (dimensionless conductance
much larger than unity). We show that the decay of these quantities with time is
not purely exponential, even for nominally diffusive samples, and slows down due
to the phenomenon of weak localization. We compare our result for the survival
probability with that obtained previously using a different approach, and show
that the two results are similar, but not completely identical.
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