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Summary

This thesis reports on theoretical work concerning the propagation of light in the pres-
ence of a large number of small scatterers. By definition a “scatterer” is an object that
influences light propagation somehow. To scatter visible light (wavelength 500 - 600
nanometer) one often makes use of dielectric particles immersed in a fluid, or paint-air
pockets. Dielectric materials scatter light by means of refraction which, in turn, is caused
by different speeds of light inside and outside the dielectric. Scattering of light can be-
come very efficient if the particle size is of the order of the wavelength. In practice, the
shape of the scatterers is hardly ever spherical but is more potato-like. In our theory we
assume them to be spherical.

We speak about “multiple scattering” if we deal with more than one scatterer. In this
thesis we study multiple scattering in the presence of “disorder”. Disorder can be of any
kind, but the one relevant for many light experiments is called “topological disorder”.
The scatterers are in that case randomly (for instance Poisson-) distributed in space.
Experimentally one usually averages scattered light over many different realizations of
the system. Another kind of disorder occurs if the dielectric constant of the scatterers or
their size is randomized. This kind of disorder will be used in chapter 4.

One important condition for the occurrence of multiple scattering is energy conser-
vation. In the presence of absorption all light is lost completely after a finite number of
collisions, so that multiple scattering is suppressed considerably. To treat light scattering
from a very large number of non-absorbing scatterers, we introduce point-scatterer mod-
els. These are the simplest objects that scatter light with conservation of energy, but do
not exist in reality. Although more sophisticated models exist to describe light scattering
from a single particle, point scatterers are very useful for multiple-scattering calculations
(chapters 2 and 3).

In one way do point scatterers lack some relevant properties to describe multiple
scattering. The “dwell time” of light inside pointlike objects is zero. A dwell time larger
than zero corresponds to time-delay suffered by waves during scattering. This delay can
become of the order of the average time between two successive collisions (the mean
free time) near resonances, and is then not negligible at all. Resonances in dielectric
scatterers show up if the wavelength of the light fits somehow with the shape and size
of the scatterer. Delay in propagation results from a temporary formation of a standing
wave inside each scatterer, and accumulates in multiple scattering. The dwell time will
be discussed in chapter 1; the consequences for the speed of light vE in the presence of
multiple scattering have been worked out in chapter 3.

A number of reasons exist why multiple scattering is worth studying. Until recently it
was believed that interference in multiple scattering will be averaged out automatically
if some disorder is introduced. In the last 30 years people have realized that this is
definitely not the case. Some examples have been identified that do not average out
to zero, but should nevertheless be attributed to constructive interference in multiple
scattering. One of them, “enhanced backscattering”, has been observed in reflection
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experiments. Interference contributions will be investigated in chapter 2.

If the medium containing the randomly distributed scatterers is sufficiently dense, it
is known that light propagation becomes diffusive. In chapter 3 we emphasize that it is
physically instructive to separate between stationary and dynamic properties of diffusive
propagation. This is rather customary in electronics (the diffusing electrons giving rise
to Ohmic resistance) where one usually distinguishes between AC and DC, but not in
optics. In stationary, multiple scattering experiments one deals with a stationary flow of
light through the scattering medium. In that case one measures length scales such as the
mean free path �. This is essentially the “step length” of the random walk with which a
diffusion process can be associated. On the other hand, a dynamic experiment concerns
the propagation of a short pulse that will be spread out by the diffusion process in the
random medium. Such an experiment probes the diffusion constant D, consisting of both
length and time scales. This is evident from the classical formula D = 1

3
vE�.

In chapter 3 we have investigated the impact of interference on the mean free path.
Contrary to the interference discussed in chapter 2, we now deal with interference inside
the random medium. It was predicted by Anderson in 1958 in his Noble Prize paper
that interference might ultimately lead to a vanishing of the diffusion constant (Anderson
localization). We shall argue that it is in fact the mean free path � that vanishes, making
Anderson localization a stationary phenomenon. Localization means that the eigenstates
in the medium are no longer “extended” (or “diffusive”), but have become “localized”.
We show that a small diffusion constant can have a dynamic origin as well, which is as
interesting as Anderson localization. This happens when the velocity vE is small, giving
rise to a considerable renormalization of time scales. The eigenstates remain extended,
but the diffusive transport suffers from “trapping” inside resonant particles or subsequent
Bragg-reflection (in periodic systems).

The theory of Anderson localization was originally developed for electrons to give a
satisfactory description of metal-insulator transitions. The insulator regime is associated
with “localized” states, and the electric conductivity vanishes. Since the basic elements
of the theory are “disorder” and “interference”, the ideas apply to all sorts of waves, not
just electrons. With respect to classical wave scattering (among which light scattering)
nobody has ever observed Anderson localization unambiguously. It is still one of the
major experimental challenges in this field.

The last chapter discusses light localization in one dimension. By “one dimension”
we mean that only one dimension suffers from disorder; the remaining dimensions obey
translational symmetry. We solve Maxwell’s equations for a dielectric multilayer. Dis-
order is introduced by varying the dielectric constant of the layers according to some
probability distribution. The interesting (actually mathematically rigorous) statement
for one-dimensional systems is that all states are exponentially localized irrespective the
strength of the disorder. This makes Anderson localization in one dimension very suitable
for a thorough theoretical study. The results may be relevant for the manufacturing of
optical filters or to enhance the effective critical angle of a dielectric multilayer.

In this thesis a serious attempt has been made to illustrate the beautiful similarities
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between light and electrons. Many concepts of Schrödinger potential scattering apply to
electromagnetic waves as well. However, the blind use of similarities can be misleading
and gives sometimes erroneous results. From an optimistic point of view this indicates
that we did not yet understand the similarity completely. For instance, it turns out in
chapter 3 that the scattering of classical waves in dielectric materials is in some ways
very similar to scattering of electrons from two-level systems, rather than from (one-
level) potentials. Another example is the fact that the introduction of point scatterers
for classical waves in three dimensions requires extra mathematical care. On the other
hand, point scatterers for Schrödinger potential scattering in three dimensions can be
introduced straightforwardly.

The theoretical research in chapters 2 and 3 was performed in close collaboration
with experimental phycisists at the “Natuurkundig Laboratorium” of the University of
Amsterdam. Some results of chapter 4 will be used in the near future as a starting point
for the experimental realization of dielectric multilayers in both the X-ray and the visible
regime of the spectrum.

Finally we draw attention to Appendix C, in which many symbols, used in this thesis,
have been clarified.

Amsterdam, July 24, 1992.
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Chapter 1

Time-Dependent Scattering Theory

1.1 Introduction

This chapter deals with the time-dependent formulation of electromagnetic wave propa-
gation in inhomogeneous media. The fundamental problem we want to tackle is how to
obtain the distribution of electromagnetic energy at arbitrary times t > 0 given an initial
distribution at t = 0. In this respect, the goal is not different from many other dynamical
problems. The time-dependent treatments of the set of Maxwell equations, governing
the propagation of light, and the Schrödinger wave equation, the dynamic equation for
quantum mechanical waves, will turn out to be quite similar.

With the unification of the electric and magnetic force by Maxwell, roughly one century
ago, the first quantitative theoretical description of light propagation was established. The
theory can be summarized by four equations, written down in differential form,

∂tE =∇×B− J (a) ; ∇ · E = ρ (c)
∂tB = −∇× E (b) ; ∇ ·B = 0 (d) .

(1.1)

In these equations E is the electric field, B the magnetic field, J is the charge current
density and ρ the charge density.

It has become clear that Eqs. (1.1) contain the rigorous classical description of light
propagation and obey the principle of Lorentz-invariance, that later emerged from the
theory of special relativity. In order to describe the behavior of light in macroscopic media
one must integrate Maxwell’s equations over microscopic properties, thereby taking into
account the interaction of light with individual atoms. This was first done by Lorentz.
He demonstrated that Eqs. (1.1) take the form [1] [2],

∂tD =∇×H− Jf (a) ; ∇ ·D = ρf (c)
∂tB = −∇× E (b) ; ∇ ·B = 0 (d) .

(1.2)

where now Jf and ρf are to be understood as “free” charge current density and “free”
charge density. The dielectric displacement D and the magnetic flux H are defined ac-

7



8 TIME-DEPENDENT SCATTERING THEORY

cording to

D ≡ E+P , H ≡ B−M , (1.3)

in which P is the electric dipole density and M the magnetic dipole density. As a matter
of fact the macroscopic Maxwell equations (1.2) were originally published by Maxwell,
whereas the microscopic equations (1.1), supplemented by the first microscopic treatment
of material properties, were later postulated by Lorentz. Hence, a Lorentz-covariant
theory emerged from a non-covariant treatment of a non-covariant theory.

To find a closed set of equations, one must specify relations between the microscopic
polarizations P and M and macroscopic fields. In fact, after Maxwell and had given the
first impulse, this became a major challenge in condensed matter physics. Microscopic
theory focusses upon the introduction of “linear response” quantities. A linear-response
theory assumes that microscopic changes in the material properties are linear in the
applied electromagnetic field. The most important linear-response quantities are the
dielectric “constant” ε, the magnetic permeability µ and the electric conductivity σ.
These tensors are defined by

|Dt〉 = ε · |Et〉 , |Ht〉 = µ−1 · |Bt〉 , |Jf, t〉 = σ · |Et〉 , (1.4)

(we introduce the abstract Dirac notation 〈r|ft〉 = f(r, t)). More generally these so-called
constitutive equations can be written as convolutions over time so as to describe memory
effects properly. Using the abstract notation of Eqs. (1.4), convolutions in space can
still be taken care of by letting the linear-response quantities functionally depend on the
momentum operator p. This possibility will not be considered here. Instead, we assume
that these quantities are local operators, being functions of the position operator r only.
Scattering particles will be characterized by local deviations of the tensors ε, µ and σ
from their vacuum values, the dielectric constant in particular.

In this thesis we shall adopt Eqs. (1.4) as rigorous. We thus ignore both nonlin-
ear response and time-dependence (c.q. frequency-dependence) of the material response.
For low field intensities and away from microscopic resonances this is a very good ap-
proximation. We show in the next section that these simplifications allow for a rigorous
time-evolution setting of the macroscopic Maxwell equations, in which the similarity to
the Schrödinger equation becomes apparent.

Causality on a microscopic level puts constraints on the frequency-dependence of the
dielectric “constant” and the conductivity. It prescribes that both quantities are real
and imaginary part of the same analytic function of frequency [2], giving rise to the
well known Kramers-Kronig relations. This is trivially true when both quantities are
frequency-independent. Hence the ignorance of frequency-dependence does not violate
microscopic causality.

A finite conductivity gives rise to absorption of electromagnetic energy, thus suppress-
ing multiple scattering of light. In order to describe macroscopic light transport we will
often assume that conducting properties of the scatterers can be ignored.
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1.2 Hilbert Space Setting

Keeping in mind the Schrödinger equation,

i∂t|ψt〉 = H|ψt〉 , (1.5)

where H is the energy operator or Hamiltonian playing the role of time-evolution genera-
tor, one seeks a similar dynamics applicable to light. The dynamics for light propagation
was already obtained in the previous section. In what follows we assume that the di-
electric constant ε and the conductivity µ are real-valued, strictly positive, symmetric
operators. We let Γ ≡ ε−1/2, Λ ≡ µ−1/2, and define the state vector,

|F t〉 =
1
√
2

(
Γ−1 · |Et〉
Λ · |Bt〉

)
. (1.6)

Eqs. (1.2) can be written in the form resembling the Schrödinger wave equation (1.5),

i∂t|F t〉 = K · |F t〉 , (1.7)

in which the time-evolution generator is given by

K =

(
0 Γ · (ε · p) ·Λ

−Λ · (ε · p) · Γ 0

)
− i

(
Γ · σ · Γ 0

0 0

)
. (1.8)

A finite conductivity gives rise to dissipation, which is described by the second term. The
Maxwell equations (1.2) (c), (d) give the additional requirement that

(
p · Γ−1 0

0 p ·Λ−1

)
· |F t〉 = −i

(
ρf
0

)
. (1.9)

We have introduced the momentum operator p = −i∇ and the Levi-Cévita tensor density
ε (not to be confused with the dielectric constant ε). By definition, (ε · p)ij =

∑
k εijkpk;

εijk is anti-symmetric in all indices with the convention that ε123 = 1.

We restrict ourselves to the case that there are no free charges (ρf = 0) and no losses
due to Ohmic dissipation (σ = 0). It can be checked from Eqs. (1.2) that the total
electromagnetic energy,

W (t) =
1

2

∫
dr
[
E∗(r, t) · Γ−2(r) · E(r, t) +B∗(r, t) ·Λ2(r) ·B(r, t)

]

=
∫
dr ‖F(r, t)‖2 , (1.10)

is conserved in time. Here ‖F‖2 ≡
∑6

i=1 |Fi|2 is the Euclidean norm in six dimensions.
The above suggests an inner product associated with Maxwell’s equations,

〈f |g〉 =
∫
dr f(r)∗ · g(r) , (1.11)
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where f(r) and g(r) are six-dimensional vectorfields on R| 3. The associated Hilbert space
is

K := L2
(
R| 3, dr,C| 6

)
, (1.12)

consisting of square-integrable six-dimensional vector fields on R| 3 equipped with the inner
product in Eq. (1.11). With respect to this inner product, the time-evolution K is a
symmetric operator. The free time evolution,

K
0
=

(
0 (ε · p)

−(ε · p) 0

)
, (1.13)

can readily be shown to be self-adjoint, since it becomes a multiplication in Fourier-space.
In the absence of free charges Eq. (1.9) takes the form,

p ·

(
Γ−1 0
0 Λ−1

)
· |F t〉 = 0 . (1.14)

Since

p ·

(
Γ−1 0
0 Λ−1

)
·K = 0 ,

it follows that Eq. (1.14) is satisfied for all t > 0 provided it holds true at t = 0. Because
Eq. (1.14) restricts the vector of state to the transverse subspace ΠK of K in which both
B and D are transverse, it is thus established that transversality is conserved in time.

We observe that K has an eigenvalue zero (of infinite multiplicity) in the orthogo-
nal complement of this subspace. This means that if the initial wave function has a
longitudinal component, the latter does not evolve in time.

¿From the time-evolution generator one constructs another fundamental operator. The
resolvent R(z) is defined as

R(z) = −i
∫ ∞

0
dt exp(izt) exp(−iKt) =

(
z −K

)−1
, (1.15)

with z complex, Im z > 0, and similarly for Im z < 0. Upon introducing the projectors

P =

(
1 0
0 0

)
and Q =

(
0 0
0 1

)

we note that P ·K ·P = Q ·K ·Q = 0. The application of Feshbach’s projection formula

[3] results in

R(z) = z−1Q + z

[
P− z−1Λ · (ε · p) · Γ ·

(
0 0
1 0

)]
·

· Γ−1 ·G(z) · Γ−1 ·

[
P+ z−1Γ · (ε · p) ·Λ ·

(
0 1
0 0

)]
, (1.16)
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where G(z) is an operator working on three-dimensional vector fields,

G(z) =
[
z2
(
ε+ iz−1σ

)
+ (ε · p) · µ−1 · (ε · p)

]−1
. (1.17)

From this formula it is clear that all interesting spectral properties of the resolvent are
contained in the operator G(z). This operator is recognized as the “resolvent” of the
Helmholtz equation, that can be obtained by a combination of the Maxwell equations
(1.2),

ε(r) · ∂2
tE+∇× µ(r)−1 · (∇×E) = σ(r) · ∂tE . (1.18)

The operatorm2(z) = ε+iz−1σ is sometimes referred to as the complex index of refraction
[4]. In the case we are dealing with a pure dielectric (µ = 1, σ = 0) the operator G(z)
reduces to

G(z) =
[
z2ε− p2∆p

]−1
, (1.19)

with ∆p = I− p̂p̂ the projection upon the transverse subspace of K
0
in K.

We turn to the eigenvalue problem of the free time evolution given in Eq. (1.13).
Its solutions are usually referred to as “plane waves”, but are here to be understood as
six-dimensional vectors. Upon solving K

0
|E〉 = E|E〉, we find the solutions,

|E〉 =

(
g

k̂× g

)
|k〉 (E ∈ R| ) .

Here k ≡ E k̂; the direction of k̂ is arbitrary. By definition |k̂| = 1. Transversality
requires g ⊥ k̂. This allows two orthogonal choices for the polarization vector g, which
we shall denote by the index j = ±1. We define the set,

|jk̂, E〉 =
1
√
2

(
gj

k̂× gj

)
|Ek̂〉 (E ∈ R| , j = ±1, k̂ ∈ 4π) . (1.20)

With the convention that |gj | = 1 these eigenfunctions of K
0
satisfy continuum normal-

ization,

〈jk̂, E|j′k̂′, E ′〉 = (2π)3 δjj′δ(E − E′)δ(k̂− k̂′) , (1.21)

and form a complete set on the transverse subspace of K
0
in K: Π

0
K,

∫
E

0
(dE) ≡

∑
jk̂E

|jk̂, E〉 · 〈jk̂, E| = Π
0
. (1.22)

The operator K
0
has continuous spectrum along the whole real axis. This is a striking

difference with the free time evolution H0 = p2 in the Schrödinger picture, which is
obviously a positive operator. This is not unrelated to the different interpretation of
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the electromagnetic wave function |F t〉 when compared to the quantum-mechanical wave
function |ψt〉. The concept of quantum mechanics associates with every observable a self-
adjoint operator A. The inner product is then used to obtain the real-valued expectation
〈ψt|A|ψt〉 and is supposed to make predictions about an experiment. On the other hand,
the electromagnetic wave function contains the electric and magnetic fields, which are
observables themselves. Consequently, any physical wave function F(r, t) should be real-
valued. Indeed, if F E(r) exp(iEt) is a solution of Maxwell’s equations at eigenvalue E,
one has sufficient freedom to choose FE(r) = F −E(r)

∗ so that

F(r, t) =
∫ ∞
−∞

dE F E(r) exp(iEt) (1.23)

is real-valued. In this respect, although square-integrable, not every wave function in K
can be considered physical. It is also remarked that the eigenvalues of the time-evolution
generator K do not coincide with the energy of the electromagnetic field. The field energy
is given by the inner product in Eq. (1.11)!

1.3 Scattering of Light

We suppose again that σ = 0 so that we have conservation of energy, and that the regions
where ε = ε(r), µ = µ(r) deviate from their vacuum values are well-localized in space. It
was indicated in the previous section that K

0
and K have non-empty eigenspaces at the

eigenvalue zero, corresponding to longitudinal components of the electromagnetic field
that do not evolve in time. In a scattering situation one has to stay away from these
subspaces. At t → −∞, the wave packet has not yet reached the region where ε(r) and
µ(r) deviate from their vacuum values and the propagation is governed by K

0
. Hence

the initial state must be in the transverse subspace Π
0
K of K

0
in K, which has projector

Π
0
= ∆pI. The transverse projector of K will be denoted by Π. We expect that

|F t〉 = exp(−iKt) · |F0〉
t→±∞
→ exp(−iK

0
t) · |F ±〉 , (1.24)

where |F ±〉 ∈ Π
0
K and |F0〉 ∈ ΠK. This leads to the definition of the Møller Wave

Operators,

Ω
±

= s− lim
t→±∞

exp(iKt) · exp(−iK
0
t) ·Π

0

= s− lim
t→±∞

Π · exp(iKt) ·exp(−iK
0
t) . (1.25)

This limit is to be understood as a strong limit [5], indicated by the “s”. The question
under which conditions of the interaction this limit exists is a major challenge in the
mathematical formulation of scattering theory. As might be expected, the answer puts
constraints on the precise nature of the interaction [6] [7] [8], its asymptotic form in
particular.
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It follows from the definition Eq. (1.25) that

Ω∗
±
·Ω

±
= Π

0
. (1.26)

Thus, provided they exist, the wave-operators are isometric in the transverse subspace
Π

0
K. From

lim
t→±∞

exp(iKt) · exp(−iK
0
(t+ s)) ·Π

0
= lim

t→±∞
exp(iK(t− s)) · exp(−iK

0
t) ·Π

0
,

one obtains the useful relation,

K ·Ω
±
= Ω

±
·K

0
. (1.27)

This identity indicates that Ω
±
|jk̂, E〉 is an eigenfunction of K, which has, by Eq. (1.26),

continuum normalization. Since the set of plane waves |jk̂, E〉 is a complete set on Π
0
K

we conclude that theΩ
±
have a range spanned by the continuum eigenfunctions ofK only.

In most cases of physical interest the ranges of both wave operators coincide and equal
precisely the part of Hilbert space spanned by the absolute continuous eigenfunctions of
the Hamiltonian. The wave operators are then said to be complete [6]. In the case of light
one must make an additional restriction to the transverse subspace.

¿From now on we assume that the transverse Maxwell Hamiltonian possesses an abso-
lute continuous spectrum only and that the wave operators are complete. One can check
that

Ω
±
·Ω∗

±
= Π . (1.28)

The scattering operator can be defined as

S = Ω∗
+
·Ω

−
. (1.29)

The S-operator is constructed such that it maps the initial wave packet upon the asymp-
totic, scattered wave packet. By applying Eq. (1.27) twice we get K

0
· Ω∗

+
· Ω

−
=

Ω∗
+
·K ·Ω

−
= Ω∗

+
·Ω

−
·K

0
. Hence,

S ·K
0
= K

0
· S . (1.30)

The S-operator is said to be on the energy shell. From the completeness of the wave
operators, one obtains the unitarity of the S-operator,

S∗ · S = S · S∗ = Π
0
. (1.31)

If the wave operators exist and are complete, the conventional scattering theory can be
applied [6] [9] [10]. Writing V = K−K

0
we can rewrite Eq. (1.25) as

Ω
±

= Π
0
+ i lim

ε↓0

∫ ±∞
0

dt exp(∓εt) exp(iKt) ·V · exp(−iK
0
t) ·Π

0
.
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Proceeding formally we have

V ·Ω
−

= V ·Π
0

+ i lim
ε↓0

∫ −∞
0

dt exp(ε t)V · exp(iKt) ·V ·
∫

exp(−iEt)E
0
(dE)

= lim
ε↓0

∫
T(E + iε) · E

0
(dE) . (1.32)

Here we invoked the spectral decomposition of K
0
,

K
0
=
∫
R|
EE

0
(dE) , (1.33)

where E
0
(dE) was defined in Eq. (1.22), and performed the time integral. Furthermore

we introduced the T-operator according to

T(z) = V +V ·
[
z −K

]−1
·V . (1.34)

This clears the way to arrive at a convenient representation of the S-operator. Since

S = Π
0
−Ω∗

+
·
(
Ω

+
−Ω

−

)
=

= Π
0
− i
∫ ∞
−∞

dt exp(iK
0
t) ·V ·Ω

−
· exp(−iK

0
t) ·Π

0
,

we find, using Eq. (1.32) that

S = Π
0
− 2πiT , (1.35)

in which

T = lim
ε↓0

Π
0
·
∫
δ(E −K

0
) ·T(E + iε) ·E

0
(dE) . (1.36)

The unitarity of S gives rise to the Optical Theorem,

T ∗ · T =
i

2π

(
T − T ∗

)
. (1.37)

By insertion of the complete set in Eq. (1.20) this can be worked out for the matrix
elements Tjkj′k′(E

±) defined by

Tjkj′k′(E
±) ≡ 2E 〈jk̂, E|T(E ± i0) |j′k̂′, E〉 . (1.38)

We replaced the limit ε ↓ 0 by “i0”. It is understood that k = Ek̂. This important
scattering quantity is usually called the T-matrix or scattering amplitude and has (due to
the factor E) the dimension of a length. In terms of the T-matrix the Optical Theorem
reads,

2πi

E

[
Tnkn′′k′′(E

+)− Tnkn′′k′′(E
−)
]
=
∑
n′

∫
dk̂′

4π
Tnkn′k′(E

−)Tn′k′n′′k′′(E
+) . (1.39)
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Specifically, choosing k̂ = k̂′′, n = n′′, one obtains the form of the Optical Theorem as it
can be found in most text books,

−
1

E
ImTnknk(E

+) =
∑
n′

∫
dk′

1

(4π)2
|Tnkn′k′(E

+)|2 . (1.40)

In the next section we show that the right-hand side is the total scattering cross-section.
The left-hand side is called the extinction term and represents the amount of energy that is
being removed from the coherent (incoming) beam. By energy conservation, the radiation
loss at forward scattering must equal the amount of scattered energy. This is the message
of Eq. (1.40). Different conventions show up in literature [4] [9] [11] [12] with respect to
sign and normalization of the scattering amplitude. The conventions above result in the
simplest “Feynman rules” for multiple scattering.

A straightforward evaluation of the scattering amplitude, using the explicit form of
the eigenstates |jk̂, E〉 given in Eq. (1.20), as well as the Feshbach formula (1.16), yields
a very convenient expression for the scattering amplitude, namely

Tjkj′k′(E
±) = 〈Ek̂|g∗j ·T(E ± i0) · gj′|Ek̂

′〉 , (1.41)

in which

T(z) = Φz2 +Φz2 ·
[
z2 − p2∆p −Φz2

]−1
·Φz2 . (1.42)

We have assumed that µ = 1; T(z) is an operator working on three-dimensional vector
fields. It has properties of a T-operator, corresponding to an energy-dependent, still
complex, potential V (z) = Φ z2 = [1 − ε(r)]z2 and complex energy z2. Indeed it can be
viewed as the T-matrix of the Helmholtz equation (1.18). The fact that light scattering
strongly resembles ordinary potential scattering from an energy-dependent potential has
far reaching consequences. These will be discussed in chapter 3.

The Eqs. (1.42) and (1.41) imply the useful symmetry relations,

Tjkj′k′(E
±) = Tj′k′jk(E

∓)∗ = Tjkj′k′(−E
±)∗ . (1.43)

In the definition of the T-matrix, Eq. (1.38), the T-operator has been sandwiched between
two eigenfunctions at the same eigenvalue E, meaning that the T-matrix in Eq. (1.38)
is defined on-shell only. By Eq. (1.30) the on-shell T-matrix is all that we need in the
standard scattering situation that both initial wave packet and detector are infinitely
separated from the region where the scattering takes place. Nevertheless, the T-operator
itself has off-shell extensions. It is well known that such extensions play a role when
the scattered wave is manipulated at finite distance from the region where the scattering
takes place. In particular, this happens in multiple scattering. The total T-matrix (for
clarity symbolized by a capital T) must again be on-shell, but t-matrices of the individual
scatterers (indicated by a small t), are typically off-shell.

Moreover, to arrive at a multiple scattering formulation of macroscopic light trans-
port (diffusion) one often considers an unbounded scattering medium. In an unbounded
medium the wave packet is never asymptotically free, and neither the S-operator, nor the
“energy shell” associated with it, exists.
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1.4 Cross-sections

Having formulated the S-matrix we address the question how to calculate the cross-section
of a scattering system. To this end we let the incoming wave packet approach a plane
wave. Mathematically, this plane wave limit can be handled using kernels in Fourier
space. Despite the fact that a plane wave has an infinite amount of energy and is there-
fore unphysical, the procedure yields a finite scattering cross-section that is supposed to
describe an experiment.

Let the incoming state be |F0〉 ∈ Π
0
K. Eventually, we take the limit of a plane wave

propagating along the x3-direction. By Eq. (1.35) we have

|F t〉
t→∞
→ exp(−iK

0
t) · |F0〉 − 2πi exp(−iK

0
t) · T · |F0〉 . (1.44)

The first part is the unperturbed incoming wave packet traversing the scattering region.
The second part constitutes the scattered wave which we shall focus upon. The electro-
magnetic energy finally emerging in a volume-element dk = k2dkdΩ in Fourier space as
well as in the polarization channel j is by definition,

dWj = (2π)2〈F0|T ∗ · χ
j
(dk) · T |F0〉 .

We have assumed that the incoming wave packet has no support in the element dk. The
associated intensity (energy density per solid angle per polarization channel) is found by
insertion of the complete set in Eq. (1.20),

dWj

dkdΩ
(k) =

(2π)2

(2π)3
k2〈F0|T ∗ |jk̂, k〉 · 〈jk̂, k|T |F0〉 .

Using the explicit form of T in Eq. (1.36) this can be worked out to

dWj

dkdΩ
(k) =

1

8π

∑
j′k′

∑
j′′k′′

δ(k − k′) δ(k − k′′)

× Tjkj′′k′′(k
′+)∗ Tjkj′k′(k

′′+) 〈j′k̂′, k′|F0〉 〈F0|j′′k̂′′, k′′〉 . (1.45)

This can be further simplified for a polarized (no longer square-integrable) incoming wave
packet with components along the x3 direction only,

〈jk̂, k|F0〉 = (2π)3δjm δ(k1) δ(k2)φ(k3) . (1.46)

With this choice we arrive at

dWj

dkdΩ
(k) =

1

8π
|Tjkm kê3(k

+)|2 |φ(k)|2 . (1.47)

The total amount of energy dΞj(k) that has been carried by the wave packet in Eq. (1.46)
through a unit surface perpendicular to the x3-axis is, in terms of the Poynting vector
S(x3) = E∗ ×H = |φ(x3)|2ê3,

dΞj

dk
dk =

∫ ∞
−∞

dtS(t) · ê3 = 2π
∫
dk
dk|φ(k)|2 . (1.48)
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By definition, the differential cross-section dσ/dΩ is given by the ratio of Eqs. (1.48) and
(1.47). This leads us to the desired result that

dσ

dΩ
(jk̂→ j′k̂′, k) =

1

(4π)2
|Tjkj′k′(k

+)|2 . (1.49)

1.5 Separable Interactions

It is well known from potential-scattering theory that the evaluation of a scattering am-
plitude becomes very easy if the interactions are separable. For N identical separable
dielectric scatterers one starts with

ε = 1 + 4πα
N∑

n=1

|ϕn〉〈ϕn| . (1.50)

Here |ϕn〉 = exp(ip · rn)|ϕ〉 is the scatterer translated from the origin to position rn; α is
a real-valued symmetric 3×3 matrix. We assume 〈ϕ|ϕ〉 < ∞. From Eq. (1.42) we obtain

T(z) = −4πz2
N∑
n,m

|ϕn〉D
−1
nm(z) 〈ϕm| , (1.51)

in which D(z) ∈ C| 3,3 ⊗ C| N,N is given by

D nm(z) = α−1δnm + 4πz2〈ϕn|G
0(z)|ϕm〉 . (1.52)

The operator G0(z) is the free resolvent of the Helmholtz equation as given in Eq. (1.19).
We can identify the t-matrix of a single scatterer according to tjkj′k′(E

+) = g∗j ·t(E
+) ·gj′,

t(E+) =
−4πE2|ϕ(E)|2

α−1 + 4πE2〈ϕ|G0(E+)|ϕ〉
. (1.53)

With the definition of the “bare propagator” (Green’s function),

G0
nm(E+) =

〈ϕn|G0(E+)|ϕm〉

|ϕ(E)|2
, (1.54)

the scattering amplitude in Eq. (1.41) of N identical separable scatterers becomes,

T
(N)
jkj′k′(E

+) = g∗j · t(E
+) ·

N∑
n,m

eik·rnD−1
nm(E+) e−ik

′·rm · gj′ , (1.55)

in which now D nm(E+) = δnm − (1 − δnm) t(E+) · G0
nm(E+). The diagonalization of

the matrix D corresponds physically to a summation over all possible light paths in the
scattering medium. Such a diagonalization principle is a convenient property of separable
interactions.
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We discuss one specific and useful choice for |ϕ〉, to which we shall refer as the “pseudo-
hard sphere model”. One takes α scalar and

〈r|ϕ〉 =
3 θ(a− r)

4πa3
; 〈k|ϕ〉 ≡ ϕ(ka) = 3

j1(ka)

ka
. (1.56)

Here j1(x) is the spherical Bessel function of the first kind of order 1. We find

t(E+) = −
4π

E

x3ϕ(x)2

α−1 +H(x)− 2
3
ix3ϕ(x)2

. (1.57)

We have introduced the “size parameter” x = Ea and

H(x) = 3 + 3
(x2 − 1) sin 2x+ 2x cos 2x

x3
. (1.58)

It can be inferred that 0.441 < H(x) < 3.893, so that the equation α−1 +H(x) = 0 has
solutions only for −2.27 < α < −0.267. These solutions are physically relevant since they
correspond to resonances in the scattering process. The value α = −1/3 is special in the
sense that the “unitarity limit” t(E+) = −6πi/E is reached in the high-frequency limit.
The cross-section is in that case proportional to the square of the wavelength.

The Green’s function G0
nm(E+) can be found by straightforward contour integration.

With |rn − rm| ≡ rnm we obtain

G0
nm(E+) =

E

4π
PE(Ernm)∆r +

E

4π
QE(Ernm)r̂r̂ . (1.59)

The orthogonal operators ∆r and r̂r̂ project upon the subspaces perpendicular to and
along the direction of r, respectively. If rnm > 2a, thus without overlap of the pseudo
spheres, we find

PE(y) =
eiy

y

(
−1 +

1

iy
+

1

y2

)
; QE(y) = −2

eiy

y

(
1

iy
+

1

y2

)
. (1.60)

On the other hand if rnm < 2a,

−
1

3
x3QE(y) =

1

2

[
H(x)− 1−

2

3
ix3ϕ(x)2

]
[s(y) + s′′(y)] + 1

+
3

2x3

[
(x2 + 1) [(c(y) + c′′(y)]−

x2y

2
−
y

4
+
y3

24

]
,

−
1

3
x3PE(y) =

1

2

[
H(x)− 1−

2

3
ix3ϕ(x)2

]
[s(y)− s′′(y)] + 1

+
3

2x3

[
(x2 + 1) [(c(y)− c′′(y)]−

x2y

2
−

3y

8
+
y3

24

]
. (1.61)

Here, again x = Ea and s(y) = sin y/y, c(y) = (1 − cos y)/y. It can be checked that
Eq. (1.60) equals the free Green’s function of the Helmholtz equation 〈rn|G0(E+)|rm〉.
The pseudo-hard sphere thus sees its non-overlapping neighbors as if they were point
scatterers [13].
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1.6 Point Scatterers

To obtain a transparent model for multiple scattering, one searches for the simplest scat-
terer that mimics the relevant physics. One automatically thinks of a point scatterer
although, for electrons, some other simple models are known [14]. In this section we shall
discuss some mathematical problems associated with point scatterers for light.

We have seen that separable interactions have the convenient property that the scat-
tering amplitude of N scatterers is found by a simple diagonalization of an N×N matrix.
Separable interactions correspond to a dielectric constant of the form 〈r|ε|r′〉 = f(r)f(r′).
If we do not want to take spatial correlation effects into account, it must be of the local
form f(r)δ(r− r′).

The only interaction that satisfies both the convenient property of separability and
the physical constraint of locality is the point interaction. A single point scatterer located
in the origin is represented by

ε = 1 + 4πα |0〉〈0| . (1.62)

We assume the “polarizability” α to be a real-valued symmetric 3×3 matrix. By definition
〈r|0〉 = δ(r). However, insertion into Eq. (1.53) gives a problem, since we end up with a
strongly divergent integral in the denominator,

t(z) = −4π

[
α−1

z2
+ 4π

∑
p

(
p̂p̂

z2
+

∆p
z2 − p2

)]−1

, (1.63)

and we conclude that the above point scatterer does not scatter. The longitudinal part
gives the strongest divergence, but can be renormalized into the coupling constant α since
both terms have the same z-dependence. For Schrödinger potential scattering in three
dimensions, it is the divergence of the second part of the integral above, the only part
present then, that can and should be renormalized. Such a procedure yields the Fermi
interaction [15] [16],

t(E+) =
−4π

α−1 − i
√
E
, (1.64)

in which E = k2 is the energy. Disappointingly, this procedure cannot be repeated for
the transverse part in Eq. (1.63). Obviously, an energy-dependent “scattering length”
αz2 can be identified, being related to the earlier notion of “energy-dependent potential”
in section 1.3. The transverse divergence is, unlike the longitudinal divergence, energy-
independent, and to renormalize it one is forced to let α depend on energy. This is
inconsistent with assumptions made already in section 1.1, and we must conclude that
the singularity of the point interaction in Eq. (1.62) is not renormalizable. To this end
we consider the following collection of “generalized” point scatterers,

ε = 1 + 4πα
∑
n

eip·rnL∗ |0〉 〈0| L e−ip·rn , (1.65)
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where L is a real-valued operator to be specified later, but let us agree to normalize it
adjoint to L∗|0〉 = |0〉. To obtain a scattering amplitude different from zero we require

A nm(z) ≡ 4πz2〈0| L eip·rnmG0(z) |0〉

= 4πz2
∑
p

L(p) eip·rnm
(
p̂p̂

z2
+

∆p
z2 − p2

)
< ∞ . (1.66)

We must choose L(p) such that the diagonal part, n = m exists as a finite integral. By
no means is this choice unique, but one that does the job is

LWu(p) =
2

3
p · ∂p +

1

3
(p · ∂p)

2 . (1.67)

It can be checked that L∗|0〉 = |0〉. Since p · ∂p = p ∂p this operator effectively projects
the divergent longitudinal part away. The choice LWu in Eq. (1.65) will be called the
Wu model hereafter. A coordinate-space representation of the model was proposed by
Grossmann & Wu [17] and Wu [18]. An alternative derivation of the Wu model was
presented in Ref. [19]. It follows after calculation that

A nn(z) =
32

9π
z4
∫ ∞

0
dp

p4

(z2 − p2)3
I = −

2

3
iz3sign(Im z) I ,

so that we obtain for the one-particle t-matrix, similar to Eq. (1.53),

t(E+) =
−4πE2

α−1 − 2
3
iE3

. (1.68)

This t-matrix has the E2-behavior at low frequencies reminiscent of dielectric scattering,
and satisfies the Optical Theorem Eq. (1.40). In this respect the Wu model can be
considered as a very convenient starting point for calculations on multiple scattering. For
scalar α the corresponding cross-section has the “3

4
(1+ cos2 θ)” phase-function known for

Rayleigh scatterers. Hence this interaction is also being referred to as “Rayleigh Point
Scatterer”. Causality arguments [20] put constraints on the sign of α. We will come back
to this in section 3.4.4.

One major shortcoming of the Wu model is the fact that the resonance is located at
infinite frequency. The question is which modification of this model gives a resonance at
finite frequency. Indeed by taking

L = (1 + β ∂p)LWu , (1.69)

with β ∈ R| , Eq. (1.68) is replaced by

t(E+) =
−4πE2

α−1 − 80
27π

βE2 − 2
3
iE3

, (1.70)
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and is, for αβ > 0, at resonance near E2 = E2
0 ≈ 1/αβ. For simplicity we have taken

α scalar. An alternative treatment (put forward by Nieuwenhuizen [21]) regularizes the
momentum integral of Eq. (1.63) according to

∑
p

1

z2 − p2
=
∑
p

(
1

z2 − p2
+

1

p2

)
−
∑
p

1

p2
. (1.71)

The second (energy-independent) divergent integral is regularized to β > 0 and is natu-
rally interpreted as the inverse extent 1/r0 of the scatterer. This reproduces Eq. (1.70) and
strongly suggests that β > 0 if Eq. (1.70) is to represent a simplistic model for a true (finite
size) scatterer. Identifying α ∼ (ε− 1)r3

0 [22] locates the resonance at
√
ε− 1E0r0 ∼ 1.

The t-matrix (1.70) also emerges from the semi-classical treatment of light scattering
from a harmonic oscillator with eigenfrequency E0 [11] [23]. In that case β−1 is associated
with the classical electron radius. We can conclude that this semi-classical t-matrix can
be considered as a formal solution of Maxwell’s equations.

The off-diagonal elements of the matrix A represent spherical waves from scatterer n
to m. We write for n �= m,

1

4πz2
A nm(z) = 〈0| L eip·rnmG0(z) |0〉 = 〈0| eip·rnmG0(z) |0〉 = G0

nm(z) , (1.72)

where G0
nm(z) was already defined in Eqs. (1.59) and (1.60). We have made use of the

identity 〈0|L|f〉 = 〈0|f〉, provided the latter inner product exists and L∗|0〉 = |0〉. This
is formally true if rnm �= 0.

The usual procedure to come to an elegant and general description of point scatterers
is by removing the origin from the domain of the free time evolution generator. One
proceeds by looking for all self-adjoint extensions of the yet symmetric operator. These
can, quite generally, be formulated using Krein’s formula [15]. In this sense, a point
scatterer is naturally interpreted as a boundary condition imposed on one single point of
the domain of the free time-evolution.

In the Schrödinger case in more than three dimensions [17], as well as in the Maxwell
situation, this strategy breaks down. The only self-adjoint extension thus found is again
the free time evolution. We encounter a case of essential self-adjointness. For the
Schrödinger equation in three dimensions [15] on the other hand, this procedure gives
the Fermi model (1.64).

Recently, the above recipe was generalized for the cases where the usual methods failed.
It was realized that divergences of the kind discussed in Eq. (1.63) can be dealt with by
a renormalization procedure of the inner product, at the price of giving up its positive-
definiteness. The enlarged vector space, equipped with such an inner product, is called
a Pontryagin space and is a direct sum of two Hilbert spaces of which one is of finite
dimensionality and contains the states with negative metric. The use of a Pontryagin
space, suggested by Grossmann & Wu [17], was first taken up by Van Diejen and Tip
[24] [25] for the Schrödinger equation in more than three dimensions. The outcome of
the Pontryagin space setting is an S-matrix that is unitary in the “physical” subspace of
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positive metric. In particular, the unphysical poles (poles in the physical sheets) of the
models (1.68) and (1.70) can be taken care of. Later, the procedure was repeated for the
Maxwell situation [22] [26]. Among the set of point interactions, the Wu model, as well
as the finite-resonance modification show up as special cases.

1.7 Dwell Times

In the preceding sections we have discussed a time-dependent theory for light propaga-
tion. This theory turned out to be quite similar to the time-dependent treatment of the
Schrödinger equation, although some conceptual but fundamental differences emerged. In
this section we apply the time-dependent theory to find an answer to the question “How
long does light spend in a dielectric scatterer?”. This time is usually called the dwell time.

We will argue in chapter 3 that the concept of dwell time in a dielectric scatterer is of
fundamental importance to the issue of multiple scattering. This is in sharp contrast with
the common belief that only the total amount of scattering of the individual scatterers is
the conclusive single-scatterer property relevant for multiple scattering.

Given a region B in coordinate space with projector χB, and an electromagnetic wave
function |F t〉, the dimensionless quantity

WB(t)

W (t)
=

〈F t|χB |F t〉

〈F t|F t〉
, (1.73)

is the relative amount of energy in region B at time t. We expect that WB(t) → 0 for
t → ±∞, because the wave packet has either not yet reached, or already left the region
B. By energy conservation, the denominator in Eq. (1.73) does not depend on time. We
can define a dwell time as

τB =
∫ ∞
−∞

dt
WB(t)

W
. (1.74)

A more sophisticated approach allows for a definition of “dwell time” provided initial and
final wave packet satisfy some imposed constraints. These constraints can be formulated
abstractly by projection operators P

i
, respectively P

f
, for the incoming, respectively

outgoing wave, projecting upon subspaces of K with the requested properties. One can
think of a specific solid angle, which we want the final or incoming packet to be in. In
one dimension one can project upon either the reflection or transmission channel.

By virtue of the S-matrix, the asymptotic solution of the scattering set-up, satisfying
our constraints for both t → ±∞ is

|F t→∞(i→ f)〉 = exp(−iK
0
t) ·P

f
· S ·P

i
|F0〉 .

Thus at finite times,

|F t(i → f)〉 = lim
t′→∞

exp(−iK(t− t′)) · exp(−iK
0
t′) ·P

f
· S ·P

i
|F0〉

= Ω
+
· exp(−iK

0
t) · S

fi
|F0〉 ,
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where Eq. (1.25) has been inserted for the wave operator. For brevity we let S
fi

=
P

f
· S ·P

i
. The conditional dwell time can now be defined according to

τB(i → f) ≡
DB(i → f)

W (i → f)
=
∫ ∞
−∞

dt
WB(t, i → f)

W (i → f)
, (1.75)

in which,

WB(t, i → f) = 〈F t(i→ f) |χB |F t(i → f)〉

= 〈F0|S∗
if
· exp(iK

0
t) ·Ω∗

+
χBΩ+

· exp(−iK
0
t) · S

fi
|F0〉 ,

W (i → f) = 〈F0|S∗
if
· S

fi
|F0〉 . (1.76)

We can work out this expression by insertion of the complete set (1.20). The numerator
becomes

DB(i → f) =
∫ ∞
−∞

dt
∑
nk̂E

∑
n′k̂′E′

ei(E−E
′)t ×

〈F0|S∗
if
|nk̂, E〉 〈nk̂, E|Ω∗

+
χBΩ+

|n′k̂′, E ′〉 〈n′k̂′, E ′|S
fi
|F0〉 . (1.77)

The time integral can be performed and gives a factor 2πδ(E − E′); Ω
+
|nk̂, E〉 is a

continuum eigenfunction of K and is, like in potential scattering theory [9], referred to as
a distorted incoming plane wave. We shall denote it by |ϕ−

nk̂
(E)〉, and use the abbreviation

〈ϕ−
nk̂

(E)|χB |ϕ−
n′k̂′

(E)〉 = Wnk̂n′k̂′(B,E) . (1.78)

From the definition of the S-matrix in Eq. (1.35) one obtains

〈nk̂, E|S
fi
|n′k̂′, E ′〉 = χf(nk̂)χi(n

′k̂′) δ(E − E′)
[
δnn′δ(k̂− k̂′)−

πi

E
Tnkn′k′(E

+)
]
.

Eq. (1.77) becomes

dDB

dE
(i → f) = 2π

∑
nk̂

∑
n′k̂′

χi(nk̂)χf(n
′k̂′)Wnk̂n′k̂′(B,E) ×

×
[
I0
E(n

′k̂′)− i IE(n
′k̂′)
]∗ [

I0
E(nk̂)− i IE(nk̂)

]
, (1.79)

where we defined I0
E(nk̂) = 〈nk̂, E|F0〉, and introduced the scattered amplitude in the

channel nk̂ as

IE(nk̂) =
π

E

∑
n′′k̂′′

Tnkn′′k′′(E
+) I0

E(n
′′k̂′′) . (1.80)

For simplicity we supposed that |F0〉 ∈ P
i
K. Eq. (1.76) can now be written as

dW

dE
(i → f) =

∑
nk̂

[
|I0

E(nk̂)|
2 + |IE(nk̂)|

2 + 2 Im
(
I0
E(nk̂)

∗ IE(nk̂)
)]

. (1.81)
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This is recognized as a sum of the coherent wave, a scattered part, and an interference
between them. Both in Eq. (1.79) and in Eq. (1.81) we have assumed that the initial
wave packet has support in a small frequency range dE only. As the S-operator is on
the energy-shell, the asymptotic, scattered wave has the same support. One obtains the
solution for a non-monochromatic wave packet by a simple integration over frequencies
E.

By combination of Eqs. (1.79) and (1.81) the conditional dwell time can be found.
Starting from these general equations we can proceed by taking χi(nk̂) = δniθ(k̂ ∈ dΩi)
and χf(nk̂) = δnjθ(k̂ ∈ dΩf ). By definition, the coherent channel is the channel in which
the coherent wave is present: dΩi = dΩf , j = i. A scattering channel is a channel in
which there is no contribution from the coherent wave: dΩi ∩ dΩf = ∅ or j �= i. We get

dτB

dΩi

(ip̂→ ip̂, p) =
dτB

dΩf

(jp̂′ → ip̂, p) =
(
p

2π

)2

Wip̂ip̂(B, p) . (1.82)

Β

(λ/2π)π 2

Figure 1.1: The ray picture, see text for explanation.

We come to a remarkable property of the monochromatic limit: the conditional dwell
time in a specific channel depends only on the orientation of this channel with respect to
the dielectric barrier B. The history, that is the channel through which the wave packet
came in originally, is completely forgotten! Indeed, if the barrier has sufficient symmetry,
all channels, including the coherent channel, have the same conditional dwell time. This
is no longer true beyond the monochromatic limit.

In the absence of symmetry, a dwell time averaged over outgoing channels can be
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obtained from

τB(p)

4π
≡
(
p

2π

)2

〈Wjp̂jp̂(B, p)〉jp̂ ≡
VB

λ2
W (B, p) . (1.83)

We introduced the wavelength λ = 2π/p, and the volume VB of the region B. W (B, p) is
identified as an averaged, normalized electromagnetic energy density of the region B (in
a stationary situation).

Having found the (average) dwell time per scattering channel we discuss the charging
time. When the scattering region B is large compared to the wavelength λ, one can use
the ray concept to visualize the scattering process. In this picture, shown in Fig. 1.1,
an incoming plane wave is considered as a collection of channels, called rays, which have
typical size λ/2π. If σ(p) is the total scattering cross-section, the number of “open” input
channels is estimated as σ(p)/π(λ/2π)2 = 4πσ(p)/λ2. The average dwell time per open
channel is called the charging time. By Eq. (1.83),

τ cB(p) =
VBW (B, p)

σ(p)
. (1.84)

In chapter 3, this time will turn out to be of fundamental importance for the time-
dependent properties of multiple scattering of light. Since Eq. (1.84) corrects for the two-
dimensional degeneracy of the incoming wave, the charging time rather than Eq. (1.83) is
expected to give an estimate of the time spent by the light in the region B, or alternatively,
the time needed to “charge” the dielectric particle to energy W (B, p).

The degeneracy problem can be handled more rigorously for rotationally symmetric
scatterers. In that case a partial wave analysis becomes feasible, and a subsequent projec-
tion of the scattered wave upon the subspace with specified rotational quantum numbers
can be performed. It is known [4] that for high frequencies such a partial wave treatment
goes over into the ray concept mentioned above.

To calculate W (B, p) the eigenvalue problem has to be solved. For the Mie sphere
(ε(r) = m2 inside a sphere with radius r0 and 1 outside), this solution can be found
in almost any text book on light scattering. The corresponding energy density for a
Mie sphere was calculated recently by Bott [27]. The dwell time for a partial wave with
principal quantum number n is, similar to Eq. (1.83),

τnB(p) =
4π

λ2
VBW

n(B, p) , n = 1, 2, · · · , (1.85)

and does not depend on the (2n + 1) magnetic quantum numbers. The s-wave (n = 0)
is absent for rotationally symmetric light scatterers because of the intrinsic spin 1 of the
electromagnetic field. The average energy density W n(B, p) is conveniently written in the
form,

W n(B, p) =
3

4

m

x3
lim
mi→0

(
Re an − |an|2

mi

+
Re bn − |bn|2

mi

)

+
3

4

m

x3

(
|dn|

2 − |cn|
2
)
ψn(mx)ψ

′
n(mx) . (1.86)
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Here x = pr0 is the size parameter, ψn(x) ≡ xjn(x); an and bn are the standard (Van
de Hulst) coefficients for the Mie sphere [4]. Apart from some conventions in sign and
normalization (see chapter 3), an respectively bn can be considered as true on-shell t-
matrices of the Mie sphere in the corresponding angular momentum subspace of the
TM, respectively TE modes [28]. As such they satisfy (in the absence of absorption) an
Optical Theorem of the kind discussed in Eq. (1.40). The parameters cn and dn instead,
characterize the electromagnetic field inside the sphere. In Eq. (1.86) we have introduced
a small absorption mi ≡ Imm > 0. The influence of small dissipation near resonances on
the scattering cross-section was discussed in Ref. [29].

In Fig. 1.2 we evaluated this expression for an index of refraction m = 2.73 as well as
for an index m = 0.75. The horizontal axis is labeled with the parameter (n+1/2)λ/2π,
which is recognized as the “impact parameter” in the ray picture [4] (section 12.31) and is
inversely proportional to the frequency. The pronounced peaks for m > 1 correspond to
shape resonances in which case the wave is trapped inside the Mie sphere, and a standing
wave is built up. The dwell time can exceed the “free time” r0/c0 by even two orders of
magnitude. Most strong peaks arise for impact parameters (n + 1/2)λ/2π > r0. This
means that they are geometrically forbidden, in the sense that these impact parameters
are not expected to be captured by the sphere.

To conclude this section we draw attention to the very convenient relation between
absorption and dwell time, apparent from Eq. (1.86). Such a relation can be expected in
general since the longer the wave spends in the dielectric, the more it will suffer from the
presence of absorption. Summing Bott’s result over all partial waves yields,

W (B, p) =
3

8

m

x
lim
mi→0

Qabs

mi

+ rest , (1.87)

where Qabs is the Quality factor for absorption, and is the absorption cross-section nor-
malized to πr2

0. The rest term is known explicitly, but turns out to be negligible near
resonances. A similar formula has been derived by Ishimaru [30]: Eq. (2-21). Accordingly,
from Eq. (1.84) we obtain for the charging time,

τ cB(p) ≈
m

p
lim
mi→0

1− a

2mi

. (1.88)

We introduced the albedo a of the scatterer, a = 1 − Qabs/QE. Without absorption
(mi = 0) we expect, by the Optical Theorem (1.40), that a = 1.

Eq. (1.88) can be understood heuristically. The wave amplitude ψ in the dielectric
barrier is expected to be of the form ψ(s, t) ∼ exp(imps−it) where s is some hypothetical
coordinate along the path of the wave in the scatterer. If the path length in the barrier is
denoted by L, we arrive at the formal expression a = |ψ(L, t)|2 = exp(−2miLp) for the
albedo. As a matter of fact, for mi ↓ 0, this formula can serve as definition for the path
length in a homogeneous scatterer without absorption. Since the velocity in the dielectric
is 1/m, the time spent by the wave in the barrier is given by τ = Lm. This reproduces
Eq. (1.88).
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Figure 1.2: Conditional dwell time for different partial waves. The dashed line corresponds
to the partial wave n = 2, the bold line to n = 10. The critical impact parameter bcrit is
the one beyond which the rays come in beyond the critical angle.

A similar, but exact formula can be derived for Schrödinger potential scattering (Ap-
pendix A). The rest term in Eq. (1.87) is a manifestation of the so-called “logarithmic
derivative”, causing different boundary conditions for the TE and TM modes in the sphere.
This term is absent in potential scattering. The set of electric (TM) modes, characterized
by the coefficients an, is influenced by this term.
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Chapter 2

Reflection and Transmission of
Multiply Scattered Light

2.1 Interference in Multiple Scattering

In this chapter we shall be concerned with the propagation of light in three-dimensional
slabs, containing randomly positioned scatterers. The study of multiply scattered light
in dense media has a long history that probably finds its roots in the description of light
transport through stellar atmospheres and interstellar clouds. The basic assumption on
which most treatises rely is the neglect of all interference, hoping that it will be averaged
out in the presence of disorder anyway. In this introduction we focus upon a variety of
multiple-scattering phenomena that can be expected in either transmission or reflection of
light from a three-dimensional random medium. For clarity, they have been summarized
in Table I.

It was realized by Watson [31], De Wolf [32], Barabanenkov [33] and others, that
the interference of two time-reversed light paths is always constructive, provided one
would look exactly at backscattering (Fig. 2.1), outside the scattering medium. This
phenomenon, now known as enhanced backscattering, is expected to be of exactly the
same numerical value as the (standard) incoherent background. Both the incoherent and
enhanced-backscattering contribution are present beyond the first order of scattering, on
a one-to-one basis. One thus expects an enhancement factor slightly less than 2.0. In fact,
from the well-documented treatment of the incoherent component [34] [35] from a semi-
infinite slab one knows that the relative amount of single-scattering to the total incoherent
background equals 12% for isotropic scalar scatterers, and 17% for Rayleigh scatterers
[35] (table 43). If one ignores all other contributions to the backscattered intensity, one
would obtain values of 1.87 and 1.83 respectively for the enhancement factor.

The phenomenon of enhanced backscattering is observable in the backscattering direc-
tion only. The next question is to what extent in angle around the direction of backscatter-
ing this interference effect survives. The length scale determining interference properties
is the wavelength λ of light. On the other hand, the length scale relevant for multiple

29



30 REFLECTION & TRANSMISSION

scattering is the mean free path �. Somehow, the (usually very small) ratio λ/� must
determine the significance of an interference phenomenon involving multiple scattering.
In the treatment of multiply scattered (sometimes confusingly called incoherent) light
� plays the role of “step length” of the random walk with which the transport of light
can be associated. The parameter � can satisfactorily be envisaged as the average length
scale over which the unscattered (or “coherent”) wave exists before it disappears due to
extinction. In a simple random-walk picture the endpoints of a light path involving N
orders of scattering are roughly

√
N� separated (more sophisticated models for multiple

scattering still allow for a random-walk interpretation, but interference causes different
mean free paths for extinction and diffusion). Standard arguments show that the width
of the enhanced-backscattering cone is essentially ∆θ ∼ λ/(2π�

√
N) radians.

In a random walk picture, the direction of propagation will be reset after one mean
free path, but this does apparently not hold for the phase. Without any explicit phase-
breaking processes, the phase-coherence remains intact beyond many orders of scattering.
This is characteristic for elastic scattering. In this context, the common terminology
“incoherent” does certainly not honor the multiply scattered light. From now on, the
word “incoherent” will be used only for contributions in reflection and transmission that
interfere with themselves.

Figure 2.1: The interference effect responsible for “Enhanced Backscattering”. There is
constructive interference at exact backscattering (θ = 0). The figure on the right is the
corresponding incoherent contribution.

Thus both height and width of the “enhanced backscattering” from a slab can be un-
derstood qualitatively. The phenomenon was observed in 1985 by several groups [36] [37]
[38]. An exact numerical solution for scalar waves in slabs of arbitrary optical depth was
presented by Van der Mark et al. [39] [40]. The scalar-wave approximation is very often
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used to study the copolarized component of multiply scattered, linearly polarized light,
as well as the helicity-preserving channel of circularly polarized light. To our surprise
a diffusion approximation turned out to be very successful in describing the enhanced-
backscattering phenomenon. In the diffusion approximation one replaces an exact trans-
port equation by a diffusion equation with appropriate boundary conditions. Such an
approximation effectively replaces the light transport on arbitrary length scales by the
random-walk picture mentioned earlier. One anticipates this picture to break down at
length scales smaller than a few mean free paths, where low orders of scattering start to
dominate and the transport becomes ballistic. Nevertheless, from a pragmatic point of
view, the diffusion theory is of such a high accuracy and simplicity that it has advantages
over rigorous, analytical, but complicated solutions for the enhanced backscattering [41].
In section 2.5 we shall indicate why the diffusion approximation is so accurate for scalar
isotropic point scatterers.

An important reason why the diffusion approximation is not satisfactory is related to
the vector nature of light. A diffusion approximation for vector waves [42] [43] does not
predict all polarization features properly, because these effects are mainly caused by low
orders of scattering. Low orders have a tendency to remember the direction of polarization
of the incoming (linearly polarized) light. High orders of scattering, on the other hand,
completely scramble the incoming polarization vector.

DIAGRAM SECTION EXPERIMENT OBSERVED

single scattering 2.4 enhancement factor < 2 yes
ladder 3.3.1 Boltzmann diffusion yes
series 3.4 DB = vE�

B/3
3.1.4 1/L transmission yes
2.5 enhanced backscattering

most-crossed ∆θ ∼ λ/� yes
series 3.3.2 Anderson localization D = 0 no

3.5 1/L2 transmission yes?
2.5 wings of enhanced yes?

two-scatterer backscattering ∼ 1/θ
most-crossed 2.4 enhanced backscattering in

cross-polarized channel yes
incoherent loops 2.6 enhancement factor � 2 no?
two-scatterer 2.4 broad enhanced no

forward-crossed forward scattering
high-order 2.6 enhanced forward scattering

∆θ ∼ λ/� no
forward-crossed 3.3.2 enhanced diffusion no

Table I. Intensity diagrams together with their experimental significance and current
status. See text for discussion.
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The observed polarization effects can be classified into three categories [44]. Firstly,
if the incident wave is 100% linearly polarized, the incoherent backscattered light turns
out to be still partially (27%) polarized.

The second effect, probably the one of most fundamental importance, involves the
enhanced backscattering in the cross-polarized channel, perpendicular to the polarization
of the incoming light. Only for double scattering does the incoherent contribution equal
its time-reversed counterpart in backscattering. For higher orders this is no longer true,
and one estimates an enhancement factor of only 1.12 in the cross-polarized channel [45].
Surprisingly, this value also emerges from the diffusion approximation [43].

The third polarization effect amounts to the spatial anisotropy of the “cone”. Exper-
imentally, the contours of equal backscattering intensity turn out to be ellipsoidal rather
than circular. This can be understood in terms of the preferential direction imposed by
the incoming polarization vector [44].

A general quantitative treatment of the vector nature of light in multiple scattering
is very complicated. For reasons mentioned above, a vector approach beyond the dif-
fusion approximation is more desired than an exact solution for scalar waves, for which
this approximation is quite adequate. Alternatively, one can hope that a diffusion ap-
proximation in combination with an explicit treatment of the lowest orders of scattering
reveals the most important effects caused by the vector nature. In this chapter it will be
demonstrated that a calculation of the single and double scattering alone already gives a
fair account of the qualitative importance of the polarization effects.

Figure 2.2: Enhanced Forward Scattering: it consists of the interference of two loops
visiting the same particles, in the same order, but ending and starting at at different
members.

An interesting question that will also be addressed is which other scattering contribu-
tions in either reflection or transmission survive in the presence of disorder. A possible
candidate is the constructive interference of two identical light paths, starting and ending
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at the same scatterer (incoherent loops). The usual incoherent treatment of multiply scat-
tered light [35] does not take into account the fact that waves can visit the same scatterer
more than once. The existence of loops generates small corrections to the incoherent
background of the reflected or transmitted signal, and is not an interference effect like
enhanced backscattering. It has been suggested in the literature that loops might ac-
count for reported low enhancement-backscattering factors [39], too much below 2.0 to be
attributed to single-scattering alone. An alternative explanation refers to an insufficient
experimental resolving power for the narrow contributions of high orders of scattering in
the cone. At present, a conclusive answer has not yet been given. The alternative expla-
nation involves a (rather uninteresting) technical detail, the first one would be a unique
(!) experimental verification of recurrent wave propagation.

The question arises whether an interference effect can be associated with loops, just
like the enhanced backscattering is the interference counterpart of the non-recurrent inco-
herent light. The answer is yes and the phenomenon is shown in Fig. 2.2. It involves the
interference of two loops starting and ending at different scatterers, and visiting the same
scatterers in either the same or the reversed order. These loops interfere constructively
in the forward direction, regardless of the exact position of the scatterers. We have called
it enhanced forward scattering. The importance of this (as yet unobserved) phenomenon
will also be discussed in the present chapter.

The concept of “enhanced backscattering” has become a well-documented topic in
physics. The cone has been studied in two-dimensional disordered [40] [46] media. An
external magnetic field breaks the time-reversal symmetry by means of Faraday-rotation
of the polarization vector [42], giving rise to a lowering of the enhancement factor. In
addition, the wavelength dependence of the backscattering cone ∆θ ∼ λ/� has been
discussed [47] in the context of a “terrestrial” redshift originally put forward by Wolf
[48]. The principle of enhanced backscattering is also known to be relevant for rough
surface scattering where some other interesting interference effects, such as Enhanced
Transmission and Enhanced Refraction have been reported [49]. A fingerprint of enhanced
backscattering can also be found in the phase function of a rough (dust) particle, which
seems to provide an explanation for the Opposition Effect. This terminology refers to the
observed increase of luminosity of some planets within 10◦ at opposition [50]. The reversal
of polarization, with which this phenomenon is known to be accompanied by, can also be
accounted for satisfactorily.

Time-of-Flight measurements of the cone have been performed in order to resolve dif-
ferent orders of scattering [51] [52]. A new dynamical technique has been employed, called
Diffusing Wave Spectroscopy [53] [54] [55], making use of the extreme phase-sensitivity
of multiple scattering to trace microscopically small movements of the scatterers. This
method has successfully been applied to study the velocity-autocorrelation function in the
presence of Brownian motion. In this way the existence of “long-time tails” [56] of this
correlation function have been confirmed experimentally [57].

The study of the cone in the presence of amplification by each scatterer will be inves-
tigated in the near future [58], making use of the concept of stimulated emission, familiar
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from laser physics. The response of multiply scattered light in the presence of stimulated
emission is one of the future challenges in the study of multiple light scattering. Since
long light paths will be favored, while retaining coherency, this study might reveal new
effects.

The most important consequence, however, of the very existence of enhanced backscat-
tering was immediately realized. Enhanced backscattering is an interference of time-
reversed waves outside the scattering medium. On the other hand, inside the medium
where the transport takes place, the same interference gives rise to an enhanced proba-
bility of return of the wave function to the origin. In case of diffusive transport this will
result in a lowering of the diffusion constant. The link with Anderson Localization was
first established by Götze [59] and Vollhardt & Wölfe [60]. Anderson localization, named
after its discoverer P.W. Anderson in 1958 [61], is the phenomenon that a wave becomes
localized in the presence of disorder, giving rise to a vanishing of diffusion. It was origi-
nally discussed in the context of electron transport. A lowering of diffusion is in that case
recognized as a decrease of the electron conductivity. The theory predicts a continuous
phase transition from a metallic (conducting) to an insulator regime [60]. As a result,
the phenomenon of enhanced backscattering is sometimes recognized as the precursor of
Anderson localization. Hence the name Weak Localization that has sometimes been given
to it. Anderson localization will be discussed more thoroughly in chapter 3.

2.2 Scattering from a Slab

The scattering of light from slabs containing randomly positioned scatterers is a well-
documented topic. We will not make any attempt to give a complete review of such
studies. Different, complementary approaches have been given been given in the books
of Ishimaru [30], Chandrasekhar [34], Van de Hulst [35], and Frisch [62]. In the present
section we will discuss some definitions and methods that serve as input and context of
the rest of this chapter.

The scattering situation is pictured in Fig. 2.3. For mathematical convenience the
slab is taken infinite in extent in two dimensions, and is supposed to contain randomly
distributed, identical scatterers of which the physical size is negligible with respect to the
thickness of the slab. Given an incoming wave, with well-defined frequency, phase and
angle of incidence, one can discriminate between “coherent” and “incoherent” scattering
from the slab. The first one consists of (Fresnel) reflection from the front interface and
refraction through the slab. If the slab is optically thick (many times thicker than one
mean free path), the refraction is expected to be exponentially small by either absorption
or scattering out of the forward direction (together referred to as extinction). The inco-
herent scattering, on the other hand, is caused by multiple scattering in the slab. As was
pointed out in the previous section, multiple scattering can still give rise to interference,
which is in our terminology classified as neither coherent nor incoherent.

To calculate the scattered intensity let us first consider a slab of finite extent in all
directions. The differential cross-section for a finite number of scatterers was obtained
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in section 1.4, and has the dimension of m2/radians. When the slab becomes larger in
transverse directions, this cross-section is expected to become proportional to the front
surface A of the slab. The dimensionless bistatic coefficient, defined as [30]

γ(µi, µs) ≡ lim
N,A→∞

4π

Aµi

〈
dσ

dΩ

(N)

(k̂i → k̂s)

〉
= lim

N,A→∞

1

4πAµi

〈
|T (N)
kiks

(k+)|2
〉
, (2.1)

Figure 2.3: The slab set-up. Shown are the coherent contribution (zero order) and the
incoherent multiply scattered light. Interference contributions such as enhanced backscat-
tering are not shown.

is a very convenient quantity characterizing the scattered intensity. We use the conven-
tional notation cos θi,s ≡ µi,s. Apart from a factor 4µs the bistatic coefficient coincides
with the emerging intensity R(µi, µs), T (µi, µs) used in the extensive tables of Van de
Hulst [35]. In the above, polarization effects can be dealt with at the cost of extra book-
keeping. It is understood that the limit N,A → ∞ is being performed at constant number
density n, according to N = nAL. Such a limit is known as a Thermodynamic Limit. The
brackets 〈· · ·〉 denote an ensemble-averaging over all possible realizations. For identical,
symmetric scatterers this involves the averaging over all positions of the scatterers only,
and an averaging over orientations does not need to be performed.

Since the bistatic coefficient describes the scattering from an infinite number of scatter-
ers, it is clear that no rigorous solutions can be obtained. The first simplification without
losing too much physics is the adoption of point scatterers. It was demonstrated in section
1.6 that the scattering from N such scatterers can be taken care of by a diagonalization
of an N ×N complex matrix.

Standard multiple scattering theory ignores a lot of contributions to the scattered in-
tensity. To estimate the significance of other contributions we have calculated the bistatic
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coefficient by solving ab initio the multiple scattering from N scalar point scatterers at
resonance (i.e. σ = λ2/π) located in a slab geometry choosing � = 15.9λ, k� = 100. Using
the bulk value for the mean free path � = 1/nσ, we have taken a fixed optical thickness
τ = L/� = 1 and a front surface A = Nσ/τ , thereby increasing N . The results are
shown in Fig. 2.4. A geometrical average has been performed over a thousand realiza-
tions, which turns out to be sufficient to eliminate realization-dependent fluctuations in
intensity (speckles). The contribution of “single scattering” is γs = τ = 1 independent of
angle. This is also more or less the incoherent bistatic coefficient at backscattering pre-
dicted by Milne theory [35] for this optical depth. The N -particle bistatic coefficient of
the incoherent background does not converge as N becomes larger, but is certainly much
larger than the prediction of Milne theory. This strongly suggests that Milne theory un-
derestimates multiple scattering near the boundaries. We might anticipate convergence
of the thermodynamic limit when N ≥ 800. In that case the front surface covers more
than one mean free path. A calculation for such a large number of scatterers is very
time-consuming, even on a supercomputer. A similar numerical experiment can be done
for a sphere geometry, for which a Milne theory was recently obtained [63].

Figure 2.4: Exact numerical solution of N scalar resonating point scatterers in a slab
geometry with unity optical depth. N is given by 50, 100, 200, 300, 500 (upwards). On
the y-axis the bistatic coefficient. The calculation for N = 500 was performed on the Cray
Y-MP machine at SARA (with thanks to Frans Vitalis).

The figure confirms the existence of enhanced backscattering. When correcting for
single-scattering, the enhancement factor turns out to be very close to 2.0, which is
exactly what one would expect (for low densities). Because the transverse size of the slab
is still less than one mean free path, the width is still determined by the transverse size
of the slab, and is not proportional to the “bulk theory prediction”: λ/2π�.
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2.3 Averaging Techniques

The usual approach to deal with multiple scattering in the presence of an infinite number
of scatterers involves a perturbative treatment which we shall now discuss briefly. The
main advantage of such a treatment is that one can discriminate between different scat-
tering events, thus hopefully being able to decide whether or not certain contributions are
relevant. One must arrive, according to Eq. (2.1), at a general expression for the averaged
square of the T-operator in the thermodynamic limit. Let us first consider the T-operator
itself. For brevity, we shall ignore polarization. In terms of this operator, the full Green’s
function is given by

G(z) = G0(z) +G0(z)T (z)G0(z) = G0(z) +G0(z)V (z)G(z) . (2.2)

Here G0(z) = [z2 − p2]−1 is the bare Green’s function, corresponding to the free scalar
wave equation, and V (z) = [1− ε]z2 is the “energy-dependent potential” relevant for the
scalar wave equation. By definition, the ensemble-averaged Green’s function is written as

〈G(z)〉 = G0(z) +G0(z)Σ(z) 〈G(z)〉 . (2.3)

X

X

connection to identical scatterer

ensemble-averaged Green’s function <G(E+)>

pp’

empty space Green’s function G (E+)

Dresses t-matrix (loop corrected)

0

single-particle t-matrix t     (E+)

Mass operator (self energy)  Σ(Ε,  )p

Figure 2.5: The Feynman rules used in this thesis.

This equation is known as the Dyson Equation. It introduces the Mass Operator or Self-
energy Σ(z), names acquired by its role in quantum field theory. The elegant way to deal
with the averaging procedure, so as to arrive at a microscopic expression for Σ(z), is the
(Zwanzig) projection method [64]. Indeed, since “averaging twice equals averaging once”
the ensemble averaging can be looked upon as a projection operation in a suitable vector
space [65]. Similar methods have successfully been employed in the theory of scattering
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from systems with internal degrees of freedom [3] [10], where one projects upon the elastic
scattering channel (usually the ground state).

In principal, the averaged Green’s function as well as the average T-operator are
known as soon as we have obtained the mass operator. In general, this mass operator
depends functionally on the t-operators of the individual scatterers, being linked together
with bare Green’s functions describing the propagation of the spherical waves from one
scatterer to another. Formula (1.55) is a special but transparent demonstration of this
so-called Fadeev picture. It is therefore convenient to introduce a diagrammatic approach
for multiple scattering. The “Feynman” conventions have been summarized in Fig. 2.5.

The irreducible nature is a crucial property of the operator Σ(z). Irreducibility means
that any diagram that can be associated with this mass operator, cannot be separated into
individual diagrams. Such a “cooking recipe” is well known from linked-cluster expansions
[69] in statistical mechanics in connection with virial approximations to the equation of
state. The irreducible nature makes it possible to write down at least the first and second
order contributions in the density (Fig. 2.6).

x x xx+

x    

x x x x x x x x

.......

+

+ 

+

Figure 2.6: The first and second order contributions in density of the mass operator.

In the presence of full translational symmetry of the averaged scattering medium, the
Dyson equation can readily be solved in momentum space. Writing

〈p|Σ(z) |p′〉 = (2π)3δ(p− p′)Σ(z,p) , (2.4)

with a similar expression for the Green’s function, we arrive at

〈G(z,p)〉 =
1

z2 − p2 − Σ(z,p)
. (2.5)

The lowest order in density of Σ(z,p) is easily obtained using the diagrammatic conven-
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tions. We find

Σ(1)(z,p,p′) =
∫
dr1

V
· · ·
∫
drN
V

N∑
j=1

eip·rj tpp′(z) e
−ip′·rj

= (2π)3n tpp(z) δ(p − p′) .

Thus we obtain the result,

Σ(1)(z,p) = n tpp(z) . (2.6)

This approximation goes under the name of independent scattering and is widely used.
Higher orders in density in Σ correspond to repeated scattering from clusters of particles
and will be discussed in chapter 3. For rotationally symmetric scatterers, tpp(z) is inde-
pendent of the direction of p. For asymmetric scatterers an additional average over the
orientation of the scatterer must be performed. This restores rotational symmetry.

According to results obtained in chapter 1, we must evaluate the mass operator at
energy (frequency) z = E + i0 ≡ E+. We note that the t-matrix element tpp(E

+) is not
on-shell, since p �= E. The existence of an energy shell heavily relies on the fact that the
scattered wave is asymptotically free. This is definitely not true in a infinite scattering
medium.

The poles of the Green’s function in Eq. (2.5) correspond to collective excitations of
the system, and are found by solving the implicit complex dispersion law [66],

E2 − p2 − Σ(E+, p) = 0 . (2.7)

The solution p(E) in the upper sheet is written as

p(E) ≡ m(E)E +
i

2�e(E)
. (2.8)

We have assumed that the averaged medium is rotationally invariant.

The fact that −E ImΣ(E+, p) > 0 is a manifestation of the fluctuation-dissipation
theorem [67]. Hence we can choose m > 0 and � > 0. The quantities m(E) and �e(E)
are called the average index of refraction and the extinction mean free path respectively.
¿From the independent scattering approximation (2.6) one finds in lowest order of the
density,

m2(E) = 1− nE−2 Re tpp(E
+, p = Ep̂) ,

1/�e(E) = −nE−1 Im tpp(E
+, p = Ep̂) = nσ(E) ≡ 1/�s(E) . (2.9)

The parameter �s is the scattering mean free path and equals, by the Optical Theorem
(1.40), the extinction mean free path in the absence of absorption. By contour integration
we can find the Green’s function in coordinate space,

〈
G(E+, r)

〉
= −

1

4πr
eip(E) r . (2.10)
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The light “intensity” is given by the square of the Green’s function. The Irreducible Vertex
U(z1, z2) can be defined similar to the mass operator,

〈G(z1)⊗G∗(z2)〉 = 〈G(z1)〉 ⊗ 〈G∗(z2)〉

+ 〈G(z1)〉 ⊗ 〈G∗(z2)〉 U(z1, z2) 〈G(z1)⊗G∗(z2)〉 . (2.11)

This equation is usually referred to as the Bethe-Salpeter Equation. The super operator
U(z1, z2) can again be checked to be irreducible [62] [64]. On one hand, iteration yields

〈G(z1)⊗G∗(z2)〉 = 〈G(z1)〉 ⊗ 〈G∗(z2)〉

+ 〈G(z1)〉 ⊗ 〈G∗(z2)〉 R(z1, z2) 〈G(z1)〉 ⊗ 〈G∗(z2)〉 , (2.12)

where we have introduced the Reducible Vertex satisfying

R(z1, z2) = U(z1, z2) + U(z1, z2) 〈G(z1)〉 ⊗ 〈G∗(z2)〉 R(z1, z2) . (2.13)

On the other hand, using Eq. (2.2), we deduce that

〈G(z1)⊗G∗(z2)〉 = 〈G(z1)〉 ⊗ 〈G∗(z2)〉 +

+ G0(z1)⊗G∗0(z2) [ 〈T (z1)⊗ T ∗(z2)〉 − 〈T (z1)〉 ⊗ 〈T (z2)
∗〉 ]G0(z1)⊗G∗0(z2). (2.14)

Comparing to Eq. (2.12) we identify

G0(z1)⊗G∗0(z2) [ 〈T (z1)⊗ T ∗(z2)〉 − 〈T (z1)〉 ⊗ 〈T (z2)
∗〉 ]G0(z1)⊗G∗0(z2) =

= 〈G(z1)〉 ⊗ 〈G∗(z2)〉 R(z1, z2) 〈G(z1)〉 ⊗ 〈G∗(z2)〉 . (2.15)

The first term in Eq. (2.14) will be referred to as the coherent wave. It is attenuated by
multiple scattering, but will nevertheless be classified as “zero order”. The second term
contains the true multiple scattering phenomena. Denoting the solution of the scalar wave
equation by ψ(r), one obtains for the multiply scattered “intensity”,

〈
|ψ(r)|2

〉
=
∫ ∫ ∫ ∫

dx1 dx2 dx3 dx4 ×

〈G(r,x1)〉 〈G
∗(r,x2)〉R(x1,x2,x3,x4) 〈ψinc(x3)〉 〈ψ

∗
inc(x4)〉 . (2.16)

We have omitted the frequency index. In a steady-state situation all components are eval-
uated at the same frequency E. ψinc(r) is the incoming wave. Eq. (2.16) can be considered
as an equation of radiative transfer but is still too general to be of any practical use. The
bistatic coefficient corresponds to r either taken far beyond the slab (transmission) or
far in front of the slab (reflection). Obviously, we must first solve the Dyson equation to
obtain the average Green’s function. This has been done for the translationally symmetric
case in Eq. (2.10). The solution of the Dyson equation in the absence of full translational
symmetry is non-trivial, even if such a symmetry is broken for one dimension only, as
is the case for a slab or spherical geometry. We shall deal with the presence of the slab
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boundaries under the assumption that they are ideal interfaces between bulk and vacuum.
We write for reflection,

〈G(r,x)〉 = −
1

4πr
ei|E|r e−iKs·x , (2.17)

and for transmission,

〈G(r,x)〉 = −
1

4πr
ei|E|r e−iKs·(Lẑ−x) . (2.18)

For r and x in the slab we adopt the form given in Eq. (2.10). The complex vector Ks

satisfies, by definition, K2
s = p(E)2, p(E) being the complex wave number in the bulk

defined in Eq. (2.9). Furthermore, the transverse component of the momentum must be
continuous. This fixes Ks completely. In low order of the density one finds

Ks = ks + i
ẑ

2�eµs

. (2.19)

Since the averaged differential cross-section is r2〈|ψ(r)|2〉, we get for the bistatic coefficient
in the direction µs in front of the slab,

γR(µi, µs) =
1

4πAµi

∫ ∫ ∫ ∫
slab

dx1 dx2 dx3 dx4

e−(τ1+τ2)/2µs eiks·x12R(x1,x2,x3,x4) e
−(τ3+τ4)/2µieiki·x34 , (2.20)

and behind the slab,

γT (µi, µs) =
e−τ/µs

4πAµi

∫ ∫ ∫ ∫
slab

dx1 dx2 dx3 dx4

e(τ1+τ2)/2µs eiks·x12R(x1,x2,x3,x4) e
−(τ3+τ4)/2µieiki·x34 , (2.21)

Here τi = zi/�e and τ = L/�e is the optical depth of the slab. The reducible vertex can in
principle be found by solving Eq. (2.13). Solving this equation with the lowest order in
density U (1) ≡ s substituted for the irreducible vertex U ignores all repeated scattering
from one particle. The diagram s itself describes incoherent scattering from one scatterer
(“single scattering”), but as part of the irreducible vertex it is used as “building block”
for arbitrary orders of incoherent scattering. The latter are associated with the so-called
ladder diagrams and are part of the reducible vertex. For isotropic point scatterers one
infers that

s(r1, r2, r3, r4) = n
∑
{pi}

tp1p3(E
+) tp2p4(E

−)

× (2π)3 δ(p1 − p2 − p3 + p4) e
ip1·r1−ip2·r2−ip3·r3+ip4·r4

=
4π

�s(E)
δ(r14) δ(r24) δ(r34) . (2.22)
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Writing for the ladder diagrams [69],

L(r1, r2, r3, r4) = s(r1, r2, r3, r4) + �−2
s F (r1, r3) δ(r12) δ(r34) , (2.23)

one obtains a simple integral equation for F (ri, rj),

F (r1, r3) = A(r13) + (4π�s)
−1
∫

slab
dr0A(r10)F (r0, r1) , (2.24)

where A(x) = x−2 exp(−x/�e). Using the translational symmetry of the slab in the
transverse direction, one can, from Eq. (2.24), recover the Milne-problem [35].

It is instructive to solve the ladder equation (2.24) in an infinite system instead of a
slab. Without absorption (�e = �s) we find for the Fourier transform F (q) of F (ri, rj) =
F (|ri − rj |),

F (q) =
(arctan q �s)/q �s

1− (arctan q �s)/q �s
. (2.25)

The diffusion approximation corresponds to approximating F (q) by 3/q2�2s. This is exact
for long light paths only (q → 0).

So far we have discussed stationary transport properties (incoming plane wave), and
only diagonal components (z1 = z2 = E+ i0) of the Bethe-Salpeter equation were needed.
It will be emphasized in chapter 3 that correlations between different frequencies corre-
spond to fundamentally different dynamical experiments.

The theoretical description of intensity fluctuations (speckles) involves the averaging
of four Green’s functions. These again, reveal new interesting information about the
random medium, in particular for parts of 〈G1G2G3G4〉 for which the averaging cannot
be replaced by a multiplication of averaged squares of Green’s functions. This is the
case for universal fluctuations (see Ref. [68] for a simple description). They will not be
discussed in this thesis.

2.4 Recurrent Scattering from Two Particles

We proceed with the calculation of low-order scattering events which can, using the point
scattering models discussed in chapter 1, be calculated analytically.

Why is this investigation important? One of the major experimental challenges is the
preparation of a strongly scattering sample. To this end one requires efficient scatterers
packed sufficiently closely together. Except for the possible onset of Anderson localization,
other effects may also start contributing to the multiply scattered intensity. In this section
we discuss effects induced by multiple scattering from two scatterers.

Let us first discuss contributions that renormalize single scattering. For the Rayleigh
point scatterer in Eq. (1.68) the two-scatterer intensity loops, shown diagrammatically in
Fig. 2.7, contribute to the bistatic coefficient at exact backscattering,

γL2 =
n2|t|6

4πA

∫ ∫
slab

dx1 dx2 |L(x12)|
2 e−2τ1 , (2.26)
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Figure 2.7: Two-particle intensity loops: high orders correspond to high orders of recurrent
scattering.
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Figure 2.8: Two-particle ladder diagrams.
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Figure 2.9: Two-particle most-crossed diagrams.
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where the loop kernel is

L(x) = g ·G2(x) ·
[
1− t2G2(x)

]−1
· g′ , (2.27)

A is again the illuminated surface of the slab; t is the scattering amplitude of a single
scatterer given in Eq. (1.68) with scalar α; g and g′ are the polarization vectors of the
incoming and outgoing light. We have chosen the z-axis normal to the slab, along the
direction of the incoming wave; G(x) is the vector analogue of the averaged Green’s
function defined in Eq. (2.10), and is discussed in detail in section 3.3.3 of the next
chapter. The bare vector Green’s function has been defined in Eq. (1.59).

The bistatic coefficient is still a function of the slab thickness, the density of the
scatterers, and their t-matrix t. To get some physical insight, suppose that k�e � 1. As
the kernel falls off rapidly with distance, |L(x)|2 ∼ exp(−2x/�e)/x

4, we shall rely on the
“infinite space approximation” and integrate the position of the second scatterer over all
of space. A convenient quantity describing the amount of disorder is the dimensionless
parameter

η ≡
4πn

E3
. (2.28)

In terms of this parameter we find that

γL2 =
3

4
η |s|4

[
1− e−2τ

]
G(s, g · g′) . (2.29)

We defined

G(s,X) = X2
∫ ∞

0
dy y2

[
|T − 1|2 +

2

15
|R− T |2 +

2

3
Re (T − 1)(R− T )∗

]

+
1

15

∫ ∞
0

dy y2|R− T |2 .

We have introduced the dimensionless quantities s ≡ E t(E)/4π, the optical depth of the
slab τ , and

T =
1

1− s2P 2
, R =

1

1− s2Q2
. (2.30)

P and Q are defined in Eq. (1.60) and represent the transverse and longitudinal part of
the vector Green’s function. Eq. (2.29) can be solved numerically for any allowed value
s. At resonance (s = i) we get

γL2 = η
[
1.41 + 6.52 (g · g′)2

] [
1− e−2τ

]
. (2.31)

This is to be taken as an upper limit for the contribution of these loops at backscattering,
and can be compared to the single-scattering bistatic coefficient,

γs =
3

4
(g · g′)2

[
1− e−2τ

]
. (2.32)
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For η ≈ 0.1, the contribution of these loops is thus comparable to single scattering and
has, in addition, a cross-polarized component. It is seen that they scale with a first power
of the density. As we shall see in section 2.6, this is not true for loops involving more than
two scatterers. Because two-particle loops renormalize single scattering considerably, they
can be responsible for a change in the enhanced-backscattering factor in weak localization
experiments.

We proceed by considering corrections to double scattering. The total two-scatterer
ladder sum is illustrated in Fig. 2.8. The first diagram in this series represents the usual
incoherent scattering from two particles. In the backward direction we have

γL2 =
n2|t|4

4πA

∫ ∫
slab

dx1 dx2 |L(x12)|
2 e−τ1−τ2 , (2.33)

where the ladder-kernel is

L(x) = g ·G(x)·
[
1− t2G2(x)

]−1
·g′ .

It is interesting to note that, because of the singular nature of the vector Green’s function,
the incoherent ladder (first diagram of Fig. 2.8) suffers from an UV singularity. Only
by summing the whole geometric series, thus taking into account all orders of repeated
scattering, can this singularity be taken care of. Proper scaling with k�e gives the ladder-
kernel in the “far-field” approximation (x � λ),

|L∞(x)|2 =
1

x2
e−x/�e (g ·∆x · g

′)
2
, (2.34)

which does not suffer from the singularity mentioned above. The bistatic coefficient
becomes, in the copolarized (g ‖ g′) and cross-polarized (g ⊥ g′) channel,

lim
k�e→∞

(
γL(2)(copol)
γL(2)(cross)

)
=

9

8

[
1− e−2τ

]
×
∫ 1

0

dc

1 + c

[
c2

(
1
0

)
+ (1− c2)2

(
3/8
1/8

)] [
1− e−(1+c)τ

]

τ>1
−→

9

8

(
log 2− 11

32
5
96

)
=

(
0.3930
0.0586

)
. (2.35)

The copolarized value compares well to the incoherent double scattering for isotropic point
scatterers 1

2
log 2 = 0.3466 [35] (page 553). Whereas the single scattering in Eq. (2.32)

is 100% polarized, the two-scatterer contribution at backscattering has a polarization
degree of

γ(copol)− γ(cross)

γ(copol) + γ(cross)
= 74% . (2.36)

The total incoherent bistatic coefficient for Rayleigh scatterers, summed for both polar-
ization channels, equals 4.588 at backscattering [35] (table 54). We deduce that single and
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double scattering events alone are responsible for a polarization degree equal to 23.7%
in the backscattered signal. This is not far different from the value ± 27% found in Ref.
[45] by numerical simulation, confirming that the partial polarization of the backscattered
signal is due to the very low orders of scattering.

Near-field corrections to incoherent double scattering can be found by subtracting
Eq. (2.34) from Eq. (2.33). Writing γL2 = γL2(far field) + ∆γL2 we find in the limit of
weak disorder k�e � 1,

∆γL2 = ∆γ(trans.) + ∆γ(long.) + ∆γ(trans./long.) ,

where

∆γ(trans.) =
3

4
η |s|2

(
8/15
1/15

)∫ ∞
0

dy y2

(
|PT |2 −

1

y2

)
,

∆γ(long.) =
3

4
η |s|2

(
1/5
1/15

)∫ ∞
0

dy y2|QR|2 ,

∆γ(trans./long.) =
3

4
η |s|2

(
2/15

−1/15

)∫ ∞
0

dy y2 2Re (QRP ∗T ∗) . (2.37)

Again, the upper number of the column vector applies in the copolarized channel and the
lower number in the cross-polarized channel. The integrals can be evaluated numerically
for any one-scatterer t-matrix. Setting this t-matrix to resonance (s = i) we get

∆γL2 =

(
−1.36
+0.19

)
η . (2.38)

The time-reversed variants of the two-scatterer ladders (Fig. 2.9) give the lowest order
contribution to the backward cone. Assuming again k�e → ∞ we deduce, as a function
of the backscattering angle θ,

γC2(θ) =
n2|t|4

4πA

∫ ∫
slab

dx1 dx2 |L∞(x12)|
2 e−s(θ)(τ1+τ2)/2 cosb · x12 , (2.39)

with b ≡ k+k′ and s(θ) ≡ 1+1/µs . In the next section this equation is further analyzed
in the regime where it is of experimental importance, namely in the wings: θ > 1/k�.

Corrections to the cone induced by the near-field between two scatterers can be found
as follows,

∆γC2(θ) =
3

2

η |s|2

s(θ)

∫
dy

4π

[
|L(y)|2 − |L∞(y)|2

]
cosb · y . (2.40)

Contrary to Eq. (2.39) we do not need extinction-factors to ensure convergence of this
integral. Physically this means that the angular width of this correction is by no means
equal to the typical 1/k� predicted by the most-crossed diagrams in the far-field approx-
imation. Whereas the latter account for a large narrow cone, the diagrams in Eq. (2.40)
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Figure 2.10: The full diagrammatic representation of the Enhanced Forward Scattering
from two scatterers.

Figure 2.11: The structure factor of the vector forward cone, as well as a scalar calculation.
The cusp near θ = 0 is an artifact of the “infinite-space approximation”.
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yield a small broad cone, and can better be classified as a density-correction to the back-
ground. We emphasize that the range of the near field is essentially the wavelength λ,
so that an interference effect involving this near field induces a typical width of λ/λ = 1
radians. In this sense, although this near-field correction obeys the one-to-one mapping of
ladders and most-crossed diagrams, it nevertheless influences the enhanced-backscattering
factor! In the copolarized channel this factor is increased by the near field (for Rayleigh
scatterers).

The last two-scatterer intensity diagrams we will discuss are shown in Fig. 2.10. It
is easy to see that these diagrams give rise to constructive interference in the forward
direction. Moreover, their value at forward scattering is equal to the loop-background.
The bistatic coefficient behind the slab is, in the “infinite space approximation”, as a
function of the forward scattering angle θ,

γF2(θ) =
2

3
η |s|4

[
e−τ − e−τ/µs

1/µs − 1

] ∫
dy

4π
|F(y)|2 cos f · y , (2.41)

with

F(y) = (T − 1)g · g′ + (R − T )(g · ŷ)(g′ · ŷ) , (2.42)

and f = k − k′. Because the integral exists for any θ without damping the Green’s
function, the angular width of this forward cone is not given by the “extinction-limited”
value 1/k�, but is much broader and is mainly determined by the τ -dependent front factor.
The broadness will complicate verification of enhanced forward scattering in transmission
experiments. The form factor in Eq. (2.41) of enhanced forward scattering is shown in
Fig. 2.11. The individual scatterers are set to resonance.

2.5 Wings of Enhanced Backscattering

We would like to find the angular scaling behavior of the wings of enhanced backscattering,
by definition, the regime where θ > 1/k�. These wings are determined by the very low
orders of scattering. We adopt conservative scattering with 〈cos θ〉 = 0 so that �s = �e = �.
The simplest description involves the scalar backscattering from a semi-infinite slab. The
two-scatterer cone is given by the bistatic coefficient,

γC2 (θ) =
1

s(θ)k�

∫
slab

dy

4π

1

y2
e−(y+yzs(θ))/k� cosb · y , (2.43)

with b = k−1 (k + k′) , b = 2 sin(θ/2). This integral can be solved numerically. To get
more physical insight, suppose that k� � 1. In the wings we have, by definition, b > 1/k�
and the bistatic coefficient simplifies to

γC2 [θ > 1/k�] =
1

s(θ)k�

∫ ∞
0

dy
sin by

by
=

1

s(θ)k�

π

2
b(θ)−1 . (2.44)
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Figure 2.12: Exact numerical solution of the scalar EB cone (�) for isotropic point scat-
terers in a slab with τ = 70 (kindly provided by Martin van der Mark), as well as the
diffusion approximation with the explicit inclusion of double scattering. Dashed: conven-
tional diffusion approximation.

Defining µ ≡ θ k�, we find the following scaling behavior,

γC2 [θ > 1/k�] →
π

4
µ−1 . (2.45)

This can be contrasted to results obtained on the basis of a diffusion approximation [36]
[39],

γC(diff) [θ > 1/k�] →
3

2
µ−2 . (2.46)

This µ−2 decay is an erroneous result of the diffusion approximation. An earlier variant of
this approximation [70] makes the wings even proportional to exp(−µ2). What goes wrong
when applying the diffusion approximation? In the diffusion approximation, one replaces
the (Fourier transform of the) ladder kernel F (q) in Eq. (2.25) by its hydrodynamic
(q → 0) limit 3/q2�2. To our surprise, we observe that this approximation holds for
large q as well, provided we drop the lowest order (the two-scatterer contribution) in the
geometric series (2.25), corresponding to double scattering. Then

F (2)(q) ≡
(arctan q �)2/(q�)2

1− (arctan q �)/(q �)




q→∞
→ 2.47 (q �)−2

q→0
→ 3.00 (q �)−2

≈ α−1(q �)−2 . (2.47)

This is the reason that the diffusion approximation works so well for point scatterers [39].
An inspection shows that the variable q can be mapped upon the backscattering angle
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θ. Eq. (2.47) is thus consistent with Eq. (2.46). The absence of double scattering in
Eq. (2.47) explains the difference between Eqs. (2.45) and (2.46). Moreover, it suggests
that the diffusion approximation can be improved considerably by a simple addition of the
double-scattering contribution. The “effective” diffusion constant for orders of scattering
larger than two, proportional to the front factor 0.333 < α < 0.405, can be estimated
by fitting the diffusion approximation plus explicitly first and second order of scattering
to the total exact incoherent bistatic coefficient for an optical thick slab. The diffusion
approximation yields γR(diff) = α−1(z0 +1/2) whereas γR(exact) = 4.228 for the bistatic
coefficient at reflection. We obtain α = 0.3579. A similar procedure for the incoherent
transmission beyond the slab fits the exact asymptotic result [35] (page 82), γT (exact) =
8.4553/(τ + 2z0) to the diffusive result [40] γT (diff) = α−1(z0 + 1)2/(τ + 2z0), giving
α = 0.3460. Here z0 = 0.7104 · ·· is the extrapolation length for conservative isotropic
point scatterers that emerges from a fit of the diffusion approximation to the standard
Milne problem [35] [71]. In Fig. 2.12 we have demonstrated the exact numerical solution,
the usual diffusion approximation, and the sum of double scattering and higher orders
adopting α = 0.3579.

We conclude on the basis of a scalar treatment that the θ−1 scaling in the wings of
the cone follows rigorously from the double-scattering contribution. A θ−1 behavior was
also reported in Ref. [72], though under completely different assumptions.

Because the wings are described by double scattering only, one can hope to describe
the impact of the vector nature of light on the wings. The wings of the Rayleigh vector
cone can be evaluated using Eq. (2.39),

γC2 [θ > 1/k�] =
9

4

1

s(θ)k�

∫
dy

4π

cosb · y

y2
×

×
[
(g · g′)2

+ (g · ŷ)2 (g′ · ŷ)2 − 2 (g · g′) (g · ŷ) (g′ · ŷ)
]
. (2.48)

The angular integral is

(g · g′)2
j0(by) +

[
1 + 2 (g · g′)2

] j2(by)
(by)2

+
(
g · b̂

)2 (
g′ · b̂

)2
j4(by)

−
[(
b̂ · g

)2
+
(
b̂ · g′

)2
+ 4 (g · g′)

(
g · b̂

) (
g′ · b̂

)] j3(by)
by

−2 (g · g′)2 j1(by)

by
+ 2 (g · g′)

(
g · b̂

) (
g′ · b̂

)
j2(by) ,

where jm is the spherical Bessel function of the first kind of order m, and b̂ ≡ b/b. Using
the standard integral [73],

∫ ∞
0

dx
jn(x)

xm
=

√
π

2
2−m

Γ
(

1
2
+ 1

2
(n−m)

)
Γ
(
1 + 1

2
(n+m)

) , (2.49)

the wings become equal to

γC2 [θ > 1/k�] =
9

4

1

s(θ)k�

π

b
W
(
g, g′, b̂

)
, (2.50)
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where

W
(
g, g′, b̂

)
=

1

8
(g · g′)2

+
1

16
+

3

16

(
b̂ · g

)2 (
b̂ · g′

)2

−
1

16

[(
b̂ · g

)2
+
(
b̂ · g′

)2
]
+

1

4
(g · g′)

(
b̂ · g

) (
b̂ · g′

)
. (2.51)

The complex nature of the function W clearly illustrates the anisotropy of the vector
cone. The vector b̂ is given by b̂ = sin θ

2
ẑ+ cos θ

2
R̂ where ẑ is normal to the slab, and R̂

parallel. We set R̂ = cosφ x̂+sinφ ŷ and define the direction of the incoming polarization
g = ŷ. To calculate the anisotropy of the wings, we distinguish [44] two cases:

case I : φ = 0 or φ = π ,

case II : φ = −π/2 or φ = π/2 . (2.52)

Suppose that θ ≡ µ/k� � 1. Then b̂ = R̂ and it follows for the wings in the copolarized
channel (g ‖ g′ ) that

γC2(copol) =
9π

128

(
3 + 5 sin2 φ

)
µ−1 . (2.53)

The copolarized wings for case I compare well to the scalar result in Eq. (2.45). Both
for the scalar case and the copolarized Rayleigh case we recover the µ−1 scaling. For the
cross-polarized channel (g ⊥ g′) we find

γC2(cross) =
27π

512
sin2 2φ µ−1 . (2.54)

For both the cases I and II, Eq. (2.54) vanishes, and we need higher orders in 1/k�.
Through an additional expansion of the extinction factors in the bistatic coefficient of the
backscattering cone it follows,

γC2(cross, case I& II) =
21

64
µ−2 . (2.55)

This 1/µ2 scaling in the cross-polarized channel is a new (fourth) polarization effect that
has not yet been reported experimentally. A µ−2 decay was also found by Stephen and
Cwilich [43] on the basis of the diffusion approximation, though for both channels. As
has been demonstrated in Eq. (2.47) for scalar waves, this is due to a neglect of the
two-scatterer contribution. In the cross-polarized channel the wings are in principle given
by the sum of the diffusive part found by Stephen and Cwilich and the two-scatterer
contribution in Eqs. (2.54) and (2.55).

¿From Eq. (2.53) we infer that the wings of case II in the copolarized channel are
(for Rayleigh scatterers) larger in magnitude than for case I, in agreement with Ref. [44].
More precisely the intensities compare as I : II = 3 : 8. The cross-polarized wings are
the same for both case I and II, and are narrower. For fixed θ they reach a maximum
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at φ = π/4,−π/4 , thus exactly in between the directions of both polarization vectors.
Then, copol : cross = 22 : 3.

We can generalize Eq. (2.50) for the case of circularly polarized light in which case the
polarization vectors become complex-valued. If the incoming and outgoing waves have
the same helicities (pres) we set, at backscattering (k′ = −k),

g = g′
∗
=

1

2

√
2 (x̂+ i ŷ) , (2.56)

and for opposite (opp) helicity,

g = g′ =
1

2

√
2 (x̂ + i ŷ) . (2.57)

Since |g · b̂|2 = |g′ · b̂|2 = 1
2

independent of φ, and using the complex equivalent of
Eq. (2.51), we find for the circularly-polarized wings,

γC2(opp) =
171π

512
µ−1 ; γC2(pres) =

27π

512
µ−1 , (2.58)

with a ratio of 19 : 3. Both helicity channels exhibit the θ−1 scaling, and are independent
of φ. The absence of anisotropic effects makes the wings very similar to the scalar wings
in Eq. (2.45). The similarity of enhanced backscattering of scalar waves and vector waves
in the helicity-preserving channel was noticed by MacKintosh and John [42], again on the
basis of the diffusion approximation.

2.6 Loops in High Orders of Scattering

In this section we calculate the contribution of some closed light paths involving many
scatterers. For three reasons it is meaningful to have an estimate for the contribution of
such light paths to reflection and transmission.

Firstly, the standard theory of (diffusive) multiple scattering in dense random media
ignores the fact that waves might visit the same region more than once (“recurrent random
walk”). The question is beyond which strength of the disorder this assumption is no longer
justified.

Secondly, there is some (very weak) experimental evidence that closed light paths
can be held responsible for low enhancement factors in enhanced backscattering [39].
Closed light paths involving two scatterers were calculated in the previous section with
the conclusion that they may indeed be as relevant as single scattering.

Finally, closed light paths generate an interference effect as well. We call this “en-
hanced forward scattering”. We show in this section that contrary to this phenomenon
involving only two scatterers, enhanced forward scattering for orders beyond three is very
interesting.
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The total incoherent ladder sum for conservative scalar isotropic point scatterers is
characterized by the ladder kernel F (x1,x2) that satisfies Eq. (2.24), with �e = �s = �.
We define

F (j+1)(x1,x2) = (4π�)−1
∫

slab
dx0A(x10)F

(j)(x0,x2) , (2.59)

and F (1) ≡ F . In the backward direction, the contribution of the loops involving three
scattering events or more (Fig. 2.13) to the bistatic coefficient is given by

γL≥3 = 2
n |t|4

4πA

∫
· · ·
∫
dx0 · · · dx4 〈G(x01)〉 〈G

∗(x02)〉 �
−2F (x1,x3)

× δ(x1 − x2) δ(x3 − x4) 〈G(x30)〉 〈G
∗(x40)〉 e−2τ0

=
2|t|2

A�3

∫ ∫ ∫
dx0 dx1 dx3 | 〈G(x01)〉 |

2 F (x1,x3)| 〈G(x30)〉 |
2 e−2τ0 .

An extra factor of 2 enters because the loops with inner most-crossed diagrams equal the
loops with inner ladders. It follows, using Eq. (2.59),

γL≥3 = 2
|s|2

(k�)2

∫ τ

0
dτ0 F

(3)(τ0, τ0) e
−2τ0 . (2.60)

It is readily seen in Fourier space, using the translationally invariant expression for F in
Eq. (2.25), that both F (2)(τ0, τ0) and F (3)(τ0, τ0) are infinite: low-order loops suffer from
an UV-singularity. In fact, the singularity of F (3) is logarithmic. This problem will be
dealt with later. For orders of scattering beyond three the loops add to

γL≥4 = 2
|s|2

(k�)2

∫ τ

0
dτ0 F

(4)(τ0, τ0) e
−2τ0 . (2.61)

Before we evaluate this expression in a finite slab, we observe that the significance of
these loops with respect to the (non-recurrent) incoherent contribution is determined by
the dimensionless variable

ν ≡ η |s|3 =
|s|

k�
. (2.62)

This parameter is proportional to the “average number of scatterers per optical volume”.

The kernel F is translationally invariant along the slab but not perpendicular to it. To
account for this we use the method of images [39] [42]: for any optical depth the diffusion
propagator is assumed to be given by

F (j)
(
τ1,2,x

‖
12

)
=

∞∑
m=−∞

F
(j)
TS

(
τ1 − τ2 +mβ,x

‖
12

)
− F

(j)
TS

(
τ1 + τ2 +mβ + 2z0,x

‖
12

)
.(2.63)

where β = 2 (τ + 2z0). FTS is the translationally symmetric diffusion operator defined in
Eq. (2.25). Substitution of Eq. (2.63) and applying Poisson’s summation rule,

1

2π

∞∑
m=−∞

eimx =
∞∑

j=−∞

δ (x− 2πj) , (2.64)
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Eq. (2.61) can be written as

γL≥4 =
4ν2

β

∞∑
j=−∞

KR(τ, yj)
∫
d2y‖

4π
F(y‖, yj) , (2.65)

where

KR(τ, y) = 1− e−2τ −
[1− e−2τe2iτy] e2iz0y

1− iy
.

We introduced the dimensionless variable y = q �. We have set yj = (2π/β) j and

F(y) =
(arctan y/y)4

1− (arctan y)/y
.

For a semi-infinite slab the sum over j reduces to an integral,

lim
τ→∞

γL≥4 =
2ν2

π

∫
d3y

4π
F(y)

[
1−

e2iz0yz

1− iyz

]
= 2.6028 ν2 . (2.66)

In the forward direction the same formula (2.65) applies but now

KT (τ, y) = 2τe−τ
[
1− eiβy

sin τy

τy

]
.

The expressions (2.65) were evaluated numerically for a finite slab, both for reflection (R)
and transmission (T). The outcome is demonstrated in Fig. 2.14. Analytical fits are

γL≥4(R) ≈ 2.60 ν2
(
1− e−1.25τ

)
; γLn≥4(T) ≈ 3.79 ν2 τ e−0.85τ . (2.67)

Judging from these expressions, it follows that these loops have a penetration depth larger
than �. Contrary to the two-scatterer loops in Eq. (2.31) they can thus not be considered
as renormalized single scattering.

As mentioned before the incoherent loops involving three scatterers suffer from a loga-
rithmic UV-divergence. Physically this indicates that some relevant mechanism has been
overlooked so far at very small length scales. Similar problems showed up in the descrip-
tion of loops involving two scatterers and the inclusion of repeated scattering between two
scatterers turned out to renormalize the divergence. Mathematically, the propagator from
one scatterer to another can be replaced by the whole geometric series according to

〈G(x)〉 →
〈G(x)〉

1− t2 〈G(x)〉2
. (2.68)

This procedure renormalizes the Green’s function on scales x2 < |t|2/(4π)2 = σ/4π in
which case the optical volumes of the scatterers overlap. Such an overlap causes a sub-
stantial decrease of the collective scattering efficiency and will be addressed thoroughly
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Figure 2.13: Incoherent or diffusive loops with 4 scattering events or more.

Figure 2.14: The bistatic coefficient γ for reflection and transmission generated by the
upper light paths, in units of ν2. The dashed lines are the analytical fits discussed in the
text.
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in section 3.3.3 of the next chapter. We note here that it provides an upper cut-off for
integrals in Fourier space of order qc ≈ 4π/|t| = 1/(ν �), even for point scatterers which
do not have a cut-off associated with the physical size. With this cut-off we estimate the
contribution of the loops involving three scatterers to be, using Eq. (2.60),

γL3 ≈ Z3(ν) ν
2
(
1− e−2τ

)
, (2.69)

in which

Z3(ν) =
2

π

∫
y<1/ν

dy

4π

(
arctan y

y

)3

∼ −
(
π

2

)2

log ν . (2.70)

These loops thus give rise to a non-analytic density dependence of the incoherently scat-
tered light.

Figure 2.15: The form factor C(f) defined in Eq. (2.72) for the forward cone caused by
constructive interference of 2 diffusive loops. The dashed line is a simple fit with same
FWHM.
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The loops involving three or more scatterers have an interference equivalent as well, but
because of the complex irreducible nature of these high order forward-crossed diagrams,
it was not possible to get an expression for them using the method of images. In order
to find out whether or not these diagrams are responsible for a narrow forward cone, we
will again rely on the “infinite space approximation”. It is easily demonstrated that the
enhanced forward scattering caused by three events has a logarithmic form factor and is
therefore not interesting as an interference effect. In the limit k� � 1 we obtain for the
bistatic coefficient of the cone involving 4 scatterers and more,

γF≥4(θ) ≈ 2
n2 |t|6

4πA
e−τ
∫

slab
dx0

∫
R| 3

dx10

∫
R| 3

dx20

× | 〈G(x01)〉 |
2 �−2F

(2)
TS (x12) | 〈G(x20)〉 |

2ei(k−k
′)·x10 . (2.71)

The integral over x0 is equal to AL. We get

γF≥4(θ) ≈ ν2τe−τ C(f) ≡ ν2τe−τ
4

π

∫
dy

4π

A(|y + f |)A3(y)

1− A(y)
. (2.72)

We defined A(y) = (arctan y)/y and f = � (k− k′). Eq. (2.72) is an estimate because long
loops suffer severely from the finiteness of the slab, but at forward scattering (f = 0), the
exact numerical value is given by Eq. (2.67). We infer a forward cone (Fig. 2.15) with
angular width ∆θ ≈ 3/k�. Whereas enhanced backscattering is a diffusion process with
long light paths involving N scattering events being responsible for a small backscattering
angle ∆θ ≈ 1/k�

√
N , the physical picture for enhanced forward scattering is a recurrent

random walk. The endpoints of the two interfering loops are roughly one step length
� apart, giving ∆θ ≈ 1/k�, independent of the length of the loops. This fact makes
enhanced forward scattering less pronounced than enhanced backscattering.

Due to the scaling with the square of the number density of the scatterers, as well
as the exponential optical depth dependence of the bistatic coefficient, it will be very
difficult to detect this enhanced forward scattering. It may be argued that this cone is
also present in the cross-polarized channel for which detection is much easier. In this
channel we expect no contribution from the attenuated incoming wave, nor from single
scattering. Detection of this forward cone would be a unique direct verification of the
very existence of recurrent light paths. Unfortunately, attempts in our group to measure
the enhanced forward scattering in the cross-polarized channel were unsuccessful up to
now.

In some localization experiments in our group, the packing fraction is 36%, corre-
sponding to η = 0.81. If the scattering efficiency |s| is assumed to be 0.7 (which would
correspond to k�s ≈ 2.5) we find ν ≈ 0.3. Enhanced forward scattering must therefore in
principle be observable.



58 REFLECTION & TRANSMISSION



Chapter 3

Diffusion and Localization in Three
Dimensions

3.1 Transport in Multiple Scattering

In this chapter we discuss light transport in unbounded random media. The absence of
boundaries of the scattering medium simplifies the theory enormously. The reason is that
an averaging procedure for the positions of the scatterers over all of space (often according
to a Poisson distribution) generates translational symmetry. The simple diagonal form of
the averaged amplitude Green’s function in Eq. (2.5) is an example of such a simplification.

To describe propagation of energy (= amplitude × amplitude), one must deal with
the average square of the Green’s function, which is certainly not simply the square of
the averaged amplitude Green’s function. In multiple scattering theory the latter has a
meaning, and represents the so-called coherent beam. This beam suffers from extinction,
because its energy is used for scattering or other mechanisms (absorption).

One of the most important issues in multiple scattering theory is the formulation
of an equation of continuity, describing the conservation of energy (or in case of elec-
trons, probability). Before averaging, thus for a given realization of the random medium,
such an equation can be derived using the equation of motion (the wave equation), pro-
vided of course that the scatterers do not absorb energy. It must hold after averaging
as well, simply because the averaging procedure is a linear operation. Since we have
chosen for a separate treatment of the averaged amplitude and the averaged scattered
intensity, an energy balance may be destroyed once we start approximating both in some
way. Since the averaged amplitude suffers from extinction (described mathematically by
a complex-valued self-energy) in favor of the scattered intensity (represented by the irre-
ducible vertex), the requirement of energy or particle conservation must somehow relate
the mass-operator to the irreducible vertex defined in section 2.3. This so-called Ward
Identity will be discussed in this chapter.

59
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3.1.1 Classical Particles

It was already pointed out in section 2.1 of the previous chapter that the process by which
light transport takes place on macroscopic scales is diffusion. Let us first briefly discuss
what can be expected for classical particles, and treat the influence of the wave nature
later. The simplest continuous diffusion process that one can imagine is a stochastic
model for a classical particle with velocity v. The step length between two successive
“collisions” is supposed to be given by a distribution P (∆). After one collision the particle
is scattered elastically in a direction prescribed by another distribution σ(v, θ) which is
readily interpreted as the “differential cross-section”. Random walk arguments show that
the displacement vector xt of the classical particle at time t satisfies〈

x2
t

t

〉
t→∞
→ 6D(v) . (3.1)

This equation can be considered as one of the definitions of the diffusion coefficient D(v),
not only for this model. For our stochastic process we find that

D(v) =
1

3
v �s

〈∆2〉+ 〈cos θ〉 (2〈∆〉2 − 〈∆2〉)

2 (1− 〈cos θ〉) 〈∆〉2
. (3.2)

Here 〈cos θ〉 is the average of the cosine of the scattering angle, taken over the differential
cross-section σ(θ). The average step length 〈∆〉 ≡ �s is the scattering mean free path.

We did not yet specify the step length distribution P (∆). We can try to take advantage
of this freedom to find a simple model for multiple wave scattering. The amplitude Green’s
function in Eq. (2.10) suggests the step length distribution for waves to be of the form
P (∆) ∼ exp(−∆/�s)/∆

2. This specific distribution obeys 2〈∆〉2 = 〈∆2〉 = 2�2s. We arrive
at

D(v) =
1

3
v

�s

1− 〈cos θ〉
≡

1

3
v � . (3.3)

The characteristic length � is referred to as the transport mean free path, and is the
length over which the memory of the direction of the particle velocity remains appreciable.
Identifying �s = 1/nσ (with σ the total cross-section) maps this simple stochastic model
onto the dilute classical Lorentz gas with n scatterers per unit volume.

We can ask whether diffusive behavior, x2
t ∼ t, still occurs if the classical particle

is replaced by a wave. One can think of either a quantum particle, with De Broglie
wavelength λ = h/mv, or a classical wave such as sound or light. To be more specific,
what is going to change in the above diffusion picture due to interference between the
scattered waves? In particular, the impact of the wave nature on both velocity v and
transport mean free path � is interesting. The velocity v is no longer fixed when the
different scattered waves interfere, and both physical quantities provide information about
the random medium. They deserve equal attention, not just their product in the form of
the diffusion coefficient.
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3.1.2 Quantum Transport

What do we know about quantum particles such as electrons? Direct experimental studies
on interference effects in multiple electron-impurity scattering are very difficult to carry
out because of problems in preparing a “one channel in - one channel out” scattering set-
up, as well as the persisting, phase-destroying influence of electron-electron and electron-
phonon scattering. One important physical quantity that is intimately related to the
diffusive transport of electrons and is also easily accessible by an experiment, is the electric
conductivity σ(E). The Einstein relation,

σ(E) = e2N(E)D(E) , (3.4)

relates the conductivity to the diffusion coefficient of the electrons. Here N(E) is the
density of states (DOS) per unit volume at energy E, and e is the elementary charge. By
the exclusion principle, only electrons at the Fermi-level EF = h̄2k2

F/2me contribute to
the electric conductivity at zero temperature so that Eq. (3.4) is evaluated at energy EF .

The appearance of a diffusion constant in Eq. (3.4) suggests a diffusive picture to be
applicable for a quantum particle. Indeed, a quantum mechanical treatment of (single-)
electron-impurity scattering in three dimensions confirms this picture in lowest order of
the impurity density [69] [74], in which case again Eq. (3.3) emerges for the diffusion
constant. The velocity is in that case the Fermi-velocity h̄kF/me. It depends weakly on
the impurity density and is mainly determined by the electron density. The lowest order
in impurity or density is usually referred to as the Boltzmann limit. Accordingly, Eq. (3.3)
is called the Boltzmann diffusion constant DB(E).

The next question is whether a classical picture still coincides with the quantum
picture beyond the Boltzmann limit. It is apparent from Eq. (3.3) that if the scattering
is predominantly in the backward direction (〈cos θ〉 < 0), the transport mean free path
becomes smaller than the scattering mean free path. It was already remarked in chapter 2
that in multiple scattering, interference effects favor backscattering directions. The same
interference effects can be expected to give rise to negative corrections to the transport
mean free path c.q. diffusion coefficient. A naive, but transparent treatment yields for
the reduction of the diffusion coefficient [75]

D ≈ DB

(
1−

3

(k�s)2

)
. (3.5)

Here k is the wavenumber of the electron. A more accurate derivation of this formula
will be presented later in this chapter. We infer that the diffusion coefficient is drastically
lowered if k�s becomes sufficiently small. Extrapolating Eq. (3.5) to large densities, it
follows that for k�s =

√
3 ≈ 1 the diffusion coefficient vanishes with a critical exponent

equal to unity. The disorder-induced vanishing of diffusion in an infinite system is called
Anderson localization. The ideas were first introduced by P.W. Anderson in 1958 in his
pioneering, “often quoted but hardly ever read” Noble Prize paper [61].

It seems that interference effects are in principle capable of breaking down a diffusion
picture for electrons completely. The energy at which this happens is commonly referred
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to as the mobility edge. The criterion k�s ≈ 1 is the Ioffe-Regel Criterion. This criterion
was originally put forward in 1960 by Ioffe and Regel [76] [77] who argued that k�s must
necessarily be greater than unity (in fact 2π in the paper of Ioffe and Regel) since a mean
free path less than a wavelength is no longer compatible with the idea of a travelling
wave. If k�s < 1 they anticipated an Ohmic picture for the electron transport in a metal
to break down. This led Mott (see Ref. [78] for a complete review) to the introduction of
a minimum diffusivity defined by substituting k�s = mevF �s/h̄ ≈ 1 into the Boltzmann
diffusion coefficient. This yields the universal constantDmott = h̄/3me = 3.85·10−5m2s−1.
Eq. (3.5) suggests that interference contributions violate this Mott minimum, and possibly
lead to a catastrophe in the diffusive transport.

What happens exactly if k�s ≤ 1? Microscopic theory [60] [79] predicts the onset
of an exponentially localized state as first suggested by Anderson [61]. In particular,
the critical exponents on both sides of the mobility edge turn out to be unity. These
predictions are consistent with the scaling theory of localization [80]. This theory describes
the appearance of localization in a finite system, featuring the dimensionless conductance
g ∼ σL2−d as the fundamental parameter in a random medium of size L in any dimension
d. The most important prediction of the scaling theory of localization is that for d ≤ 2
one expects always, that is for (“almost”) any energy and arbitrary degree of disorder,
Anderson localization. This means that interference completely destroys a random-walk
picture for an electron in one and two dimensions.

Localization of waves in one dimension can be treated rigorously using transfer ma-
trices [81] and one does not need the scaling theory. The onset of localization in two
dimensions is still subject to discussion and even some models have been published that,
contrary to the prediction of the scaling theory, do not have localized states [82]. The scal-
ing theory of localization predicts (sometimes astronomically) large localization lengths
under realistic conditions of disorder. If the system is smaller than this length, localization
corrections show up as corrections to a quasi two-dimensional diffusion constant and there
is no true localized behavior. In this chapter we will not be concerned with localization
in dimensions other than three. Chapter 4 discusses some results in one dimension.

3.1.3 Localization of Light

The ideas behind Anderson localization were originally developed for electron waves. The
important elements are “disorder” and “interference”, together with the observation that
the first does not eliminate the second. As such, any kind of wave in some random medium
must in principle be subject to localization, and thus also light. Phycisists realized this
only 20 years ago, which is surprising because the wave nature of light has been established
longer than the wave nature of electrons!

The similarity between the classical wave equations and the Schrödinger equation sub-
stantially simplifies the inclusion of interference in multiple scattering of classical waves.
Many concepts of electron transport theory have been taken over to describe propagation
of light in random media with the usual recipe that the Fermi wavelength is replaced by
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the wavelength of light. Well known examples are the formulations of criteria for strong
localization for classical waves such as the above-mentioned Ioffe-Regel criterion and the
more general Thouless criterion [83]. The Thouless criterion was put forward in close
connection with the scaling theory of localization. Another crucial example is the appli-
cation of conservation laws, expressed by means of Ward identities. Such identities were
originally developed for electron-impurity scattering and were then simply supposed to be
valid for the scattering of light from randomly distributed dielectric particles. Concern-
ing the validity of Ward identities we shall argue that they turn out to be considerably
different for light scattering. With respect to the Thouless criterion we will see in the
last section that great care is needed when applying it to localization of light rather than
electrons. There are several reasons why multiple light scattering is different from and
thus complementary to multiple electron scattering, which we shall now discuss.

Electron-electron interactions are known to be able to induce a localized state as well,
with the same critical exponents [84]. In order to discriminate this kind of localization
from the disorder-driven Anderson localization, it is called Mott-Hubbard Localization.
Since “photon-photon” interactions are absent on the level of Maxwell’s equations, a
Mott transition can safely be ruled out for light localization.

Secondly, in the case of electron-impurity scattering one always deals with phase-
destroying effects which prohibit interference effects on a large scale, possibly preventing
the onset of Anderson localization. In the case of light, however, one has sufficient control
over the influence of inelastic effects to stay in the mesoscopic regime, where the phase-
breaking length scale exceeds the physical size of the random medium. This has only
recently become possible for electrons, an achievement that stimulated the progress of
mesoscopic condensed matter physics enormously.

Contrary to multiple electron scattering, the role of absorption is very important in
multiple light scattering. Electrons lose at most the phase memory, but their number is
conserved under normal conditions. Consequently (and fortunately!), the electron conduc-
tivity does not decay exponentially with the size of the Ohmic conductor in the presence
of phase-destroying processes. As a matter of fact, the resetting of the electron phase
after each inelastic collision automatically performs an averaging procedure [74].

Diffusive light on the other hand, disappears completely after one absorption length
La, defined in terms of the absorption mean free path �a = �e/(1− a) (with a the albedo)

L2
a =

1

3
� �a . (3.6)

As a result, the incoherent transmission (“photon conductivity”) of a slab will decay
exponentially beyond one absorption length. Although the albedo a is very close to unity
in the best optical experiments (a ≈ 0.9999) the length La is short enough to influence
the propagation of light in thick slabs.

The absorption of light is not necessarily a disadvantage. By itself, the interplay
between absorption and localization is very interesting to study. Both can be the origin of
an exponentially small transmission coefficient. In the conventional theory of localization,



64 DIFFUSION & LOCALIZATION

applied to light, all interference effects are restricted to a volume Ld
a [85] [86]. The outcome

is an anomalous absorption length,

L3
a ∼ �2s �a , (3.7)

rather than the length in Eq. (3.6). At present, the impact of absorption on localization
of classical waves is still controversial.

A property that makes light scattering fundamentally different from electron-impurity
scattering was already mentioned in section 1.3, and involves the presence of an energy-
dependent potential,

V (r, E) = [1− ε(r)]E2 , (3.8)

where ε is the dielectric constant. We will show in this chapter that this property has a
dramatic impact on the microscopic formulation of the velocity that enters the diffusion
constant in Eq. (3.3). Our theory demonstrates that, already in the Boltzmann approxi-
mation, this velocity can become an order of magnitude (!) less than the phase velocity,
defined in terms of the averaged index of refraction given by Eq. (2.9). The rather smooth
phase-velocity was always believed to be the speed relevant for diffusion. This is of vital
importance for the interpretation of localization experiments: a small velocity as well as
a short mean free path can be the origin of a small diffusion constant.

If the speed v is low one might, on the basis of measurements on the diffusion constant
alone, erroneously deduce a short mean free path, and in turn, the nearness of a mobility
edge. Time-resolved experiments (probing the broadening of a narrow pulse in time) yield
an independent estimate of this velocity, and should be carried out in order to verify such
a spectacular possibility. Indeed, in optical experiments in our group [87] (performed at
the University of Amsterdam), and conceivably others [88], the observed small diffusion
constants turn out to be consistent with a Boltzmann picture involving very low speeds
of light.

For which energies do we expect Anderson localization of classical waves? (In this
thesis we use both the terminology “frequency” and “energy” to refer to the variable E
for classical waves). To answer this question, we suppose that the Ioffe-Regel criterion
k(E)�(E) ∼ 1 is the criterion for Anderson localization, and substitute the lowest order
in density for both the average wavenumber k and the scattering mean free path �s at
frequency E. Then E/nσ(E) ∼ 1 at the mobility edge.

For low frequencies (corresponding to wavelengths much larger than the particle) the
potential vanishes as E2. Consequently, the cross-section behaves as E4 at low energies,
a phenomenon called Rayleigh scattering. This well known sensitive energy dependence
of the cross-section favors the scattering of small wavelengths over long ones and is re-
sponsible for the sky being blue and the sun being red. The Rayleigh behavior gives
E/nσ(E) ∼ 1/E3 → ∞. We conclude that localization is absent at low frequencies.

At very high frequencies one enters the geometrical optics regime where light waves
can be treated as ‘rays”. The ultimate limit E → ∞ yields a non-vanishing total cross-
section which equals twice the geometrical area of the particle (the extinction paradox,
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which is not a paradox if one recalls that half the scattered light actually emerges within
a very narrow diffraction cone). At high frequencies one finds E/nσ(E) ∼ E → ∞, and
no localization seems possible.

Thus, if one wants to observe localization of light in three dimensions, one must tune
to intermediate frequencies, with the wavelength more or less comparable to the size of
the dielectric scatterers. This is exactly the regime of resonant scattering. Since the
cross-section is large at resonances, the mean free path is expected to be small. Using
resonant scatterers one can thus hope for a localization window where k�s ≤ 1 [89]. The
existence of such a window has indeed been predicted, and the localization lengths have
been calculated [90] [91] . The conclusion was that it must in principle be possible to
observe Anderson localization of light.

The optimistic calculations are based upon extrapolation of results obtained in the
low-disorder limit, and there is considerable suspicion that such an extrapolation might
not be justified. In particular, we made use of the familiar “independent-scattering”
expression for the mean free path �s = 1/nσ, although more sophisticated “effective
medium approaches” have been published [92]. When developing a theory for densely
packed resonant scatterers, the following complications immediately appear:

• The “excluded volume” of the scatterers prevents them from being distributed in-
dependently (= “Poisson statistics”).

• The possibility that a wave visits one particular scatterer more than once (dependent
scattering) can no longer be ignored.

• A scattered wave leaving one particle will not yet have reached its asymptotic limit
when undergoing a subsequent collision: off-shell contributions of the scattering
amplitude play a part.

• Other mechanisms than light scattering carry the energy in between the particles.

In this chapter we shall use a point-scatterer model to investigate the importance of the
second and third issue. We develop a sophisticated model to find the Ioffe-Regel parameter
k�s as a function of the density of the scatterers. Since point scatterers do not have an
“excluded volume” the first complication is absent here. It can certainly be relevant in an
experiment and some workers have tried to include this effect on a Boltzmann level [54].

In this thesis we will not deal with alternative mechanisms for light transport. For
the case of resonant atoms, the resonance dipole-dipole interaction is known to become
important when the Ioffe-Regel criterion is obeyed [93], and gives rise to the fourth-
mentioned complication. This dipole-dipole coupling is absent in dielectric scattering.

The main conclusion of our calculations is that dependent-scattering corrections have
a strong tendency to decrease the collective scattering efficiency, thereby giving rise to a
shift of the mobility edge to higher densities.
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3.1.4 Light versus Electrons

In the preceding section we enumerated some specific properties of light localization. In
comparing the theory for multiple light scattering and electron-impurity scattering we
encounter a number of other differences.

The polarization of light enters in most cases as extra bookkeeping, and forbids the
occurrence of spin 0 (s-wave) in the electromagnetic field. As a matter of fact, the intrinsic
spin is what makes light special among other classical waves such as acoustic waves or
capillary waves.

The linear dispersion law E2 = p2 c2, with E the frequency, introduces some minor
modifications of the single-electron theory (where the energy is given by E = p2/2me)
applied to light.

The presence of an energy-dependent potential in the classical wave equations gives rise
to some fundamental differences between classical waves and Schrödinger waves, of which
some have already been discussed. ¿From a theoretical point of view it can be remarked
that for classical waves, the well known Born Approximation applies at low energies
rather than large energies E � |V |. For large energies the Born approximation describes
potential scattering. In case of light scattering from dielectric particles, this last limit can
be achieved only if the dielectric constant ε(r) is near unity, since V (E) = [1− ε(r)]E2 at
“energy” E2. In optics this is the regime of Rayleigh-Gans scattering [4] (chapter 11).

In the second part of this chapter we discuss the impact of an energy-dependent
potential on the speed of light in multiple scattering. It will turn out that neither our
theory nor any other physical principle provides a lower limit to the diffusive velocity
of light. Hence, the notion of a “Mott minimum” for the diffusion constant, mentioned
earlier in the context of electron diffusion, is even absent in the Boltzmann limit for light,
without invoking localization concepts in multiple scattering.

Alternatively, one might ask which consequences the absence of an energy-dependent
potential has for multiple scattering of electrons? An inspection of the literature on
electron-impurity [69] and electron-phonon scattering [94] shows that the (Boltzmann)
electron conductivity is given by

σB =
nee

2τ

me

, (3.9)

where ne is the electron density, τ the mean free time and me the bare electron mass.
It can be argued that, due to interaction with phonons or impurities, this mass suffers
from the so-called “mass enhancement”. A careful study however, reveals that the same
mass-enhancement factors enter into the mean free time τ , and all these factors cancel
[94] [69] (page 659)! It turns out that this cancellation is not a coincidence as some text
books make us believe, but is due to a very general conservation law (Ward identity) for
energy-independent, local potentials.

The absence of an energy-dependent electron-impurity potential has far reaching con-
sequences for the predicted energies at which Anderson localization sets in. At very
low energies neither the impurity potential nor the scattering cross-section go to zero,
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and the Ioffe-Regel criterion can (probably) be satisfied. Because the strong resonances
reminiscent of light scattering from dielectrics are absent in electron-impurity scattering
(again because the potential does not depend on energy), the only spectral region where
Anderson localization of electrons can be expected is at low energy.

¿From a principal experimental point of view, electrons and light are not so different.
In both cases there are two kinds of experiments: Stationary measurement probe length
scales, dynamic measurements, on the other hand, probe time scales. Concerning elec-
trons, we argue that the dc electron conductivity is a stationary quantity (justifying its
appearance in stationary theories like the scaling theory of localization). The measure-
ment of a dc Ohmic resistance must thus be categorized as a stationary experiment.

The classical counterpart is the time-integrated (=dc) incoherent transmission coeffi-
cient T of a slab with thickness L,

T (L) =
∫ ∞
−∞

dt T (L, t) ∼
�

L
. (3.10)

The transport mean free path � is a length scale and is, as such, allowed to be part of
a steady-state quantity. In a dynamic multiple light scattering experiment, on the other
hand, one probes the whole distribution T (L, t). Since now time-scales are involved, the
velocity vE (or the diffusion constantD = vE�/3) of the multiply scattered light must come
in as well. The diffusion constant can thus only be obtained from a dynamic measurement.
The time-dependent transmission coefficient T (L, t) is the classical counterpart of the AC
electron conductivity.

3.1.5 Observation of Anderson Localization

How can we deduce the existence of Anderson localization from an experiment? Has
Anderson localization ever been observed? The complication with regard to the first
question is that an experiment is always performed in a finite sample. “Theoretical”
Anderson localization (D = 0) on the other hand, is a prediction for an infinite system.
The first question should thus be reformulated as: “What remains of Anderson localization
in a finite system?”

The scaling theory of localization [80] is an attempt to answer this question. As such,
it must still be considered as the most important contribution in our field. In a finite
medium, the energy or probability in a “localized” state always leaks away through the
boundaries. According to the scaling theory of localization this leaking can be represented
by a scale-dependent transport mean free path �(L) ∼ �2s/L. Likewise, the incoherent
transmission is expected to behave as T ∼ �2s/L

2 rather then T ∼ �s/L if the transport
would have been diffusive. The existence of anomalous absorption, Eq. (3.7), is another
prediction of this theory.

Since it has recently become possible to manufacture three-dimensional dielectric crys-
tals with a true gap [95], one is speculating about the observation of localization in such
crystals subject to small disorder. Calculations by John [96] [97] show that the wavenum-
ber in the Ioffe-Regel criterion is replaced by the crystal momentum, which vanishes at
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the Brillouin-zone boundary making kcrys�s < 1. Thus localization might be achieved with
relative ease near a (pseudo-) gap of such a crystal. This is consistent with the general
belief that localization is easiest in regions with a low density of states. Since the bare
group velocity of the crystal vanishes near the gaps (Van Hove singularities) one must
again be very careful in attributing localization to small diffusion constants [98].

Up to now, nobody has observed Anderson localization for classical waves in three
dimensions unambiguously. The only serious claim is due to Genack [99] who reports
a 1/L2 behavior of the incoherent transmission coefficient, but no other groups have
confirmed this experiment as of yet. Some others have misunderstood the concept of
Anderson localization [100]. With regard to localization of light in dielectric crystals no
experiments have been performed so far, and one is still in the process of optimizing the
bandstructures.

What about Anderson localization of electrons? After all, the ideas of Anderson local-
ization were developed to model metal-insulator transitions. Theoretically, one expects
Anderson localization at small energies, more precisely at the bottom of the conduction
band. Metal-insulator transitions are widely observed. The problem is however, that one
cannot associate such a transition unambiguously either with Anderson or Mott local-
ization [101]. The latter is caused by electron-electron interactions. Both the standard
theory for Anderson localization and Mott localization predict a critical exponent of unity
for both the conductivity in the extended regime and the dielectric constant in the lo-
calized regime. Thus even for electrons Anderson localization is still speculative. Yet
more complicated to explain is the claim of a critical exponent 1/2 for the metal-insulator
transition in uncompensated Si:P [102] [103].

Another important physical phenomenon for which the ideas of electron localization
seem to be relevant is the Quantum Hall Effect. The observed plateaus in the Hall con-
ductivity of a two-dimensional electron gas imposed by a sufficiently strong perpendicular
magnetic field can be associated with extended states near the quantized cyclotron or-
bits (Landau-levels). Further away from these levels the wave-function becomes localized.
This implies that these states do not contribute to the longitudinal conductivity of the
electrons. A calculation demonstrates the existence of a plateau in the Hall conductivity
[104] if the Fermi-level is situated in a localized regime. At first sight, the existence of
extended states seems to be in disagreement with the scaling theory of localization which
predicts all states to be localized. The states become “quasi-extended” as soon as the
predicted exponential decay of the wave-function exceeds some phase-destroying length
(possibly caused by spin-orbit coupling). The scaling theory of localization predicts lo-
calization to be the least pronounced in spectral regions where the density of states is
highest. Thus one anticipates the quasi-extended states to occur right in the middle of
the Landau levels. The work of Wei et al. [105] demonstrates that a one-parameter
scaling theory of localization is in beautiful agreement with measurements on the scaling
behavior in between the plateaus.
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3.2 Boltzmann Equation for Classical Waves

This section is devoted to the derivation of a Boltzmann equation for scalar classical
waves. This equation is of fundamental importance for the description of diffusion and
localization of waves. Elements of this derivation can be found in the papers by Vollhardt
and Wölfe [60] (which concerns electrons), Kirkpatrick [106] (acoustic waves) and Zhang
and Sheng [107] (classical scalar waves).

For Schrödinger potential scattering, Liouville methods can be employed to arrive at
this transport equation [59]. One thus finds a dynamic equation for the averaged density
operator in terms of an as yet abstract collision operator J . The eigenvalue zero of this
operator guarantees energy or probability conservation. In the following we choose for
another approach which finally gives the collision operator in terms of the self-energy Σ(z)
and irreducible vertex U(z1, z2) defined in section 2.3.

Given an unbounded, as yet unaveraged random medium, we study the quantity

P (r′, r, t) ≡ |G(r′, r, t)|2 . (3.11)

Integrated with a source at time t = 0 at position r′ this quantity gives the “intensity”
|ψ(r, t)|2 at later times t at position r. The initial value problem can be handled through
a Laplace transformation,

P (r′, r|ω) =
∫ ∞

0
dt ei(ω+i0)t P (r′, r, t) . (3.12)

By decomposing the Green’s function into frequency modes,

G(r, r′, t) =
∫ +∞

−∞

dE

2π
eiEtG(E|r′, r) , (3.13)

we can check that, with E± = E ± ω/2± i0,

P (r′, r|ω) =
∫ +∞

−∞

dE

2π
G(E+|r′, r)G(E−|r, r′) . (3.14)

An averaging over ensembles restores translational symmetry, so that 〈P (r, r′|ω)〉 =
〈P (r− r′|ω)〉. We construct

PE(ω q) =
∫
dr
〈
G(E+|r)G(E−| − r)

〉
eiq·r =

∑
p

〈
G(E+,p+)G(E−,p−)

〉
, (3.15)

where p± = p± q/2. With the identification of

ΦEp(ω q) ≡
〈
G(E+,p+)G(E−,p−)

〉
, (3.16)

we have obtained a physical quantity which directly translates to 〈P (r, t)〉 according to

∫ ∞
0

dt ei(ω+i0)t
∫
dr eiq·r 〈P (r, t)〉 =

∫ +∞

−∞

dE

2π

∑
p

ΦEp(ω q) . (3.17)
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We shall therefore focus our attention on this quantity. We observe that E and p label
“internal” oscillations of the wave packet in time, respectively space, over which should
be integrated in the end. The “external” parameters ω and q, on the other hand, give the
space-time behavior of the quantity that we are interested in. In particular, the long-time
behavior is determined by the limit ω → 0, whereas the asymptotic space distribution
is governed by the solution near q = 0. This so-called Kubo limit [67] is the regime of
macroscopic transport that will be considered in this chapter.

Since P (r, t) will remain bounded as t → +∞, it is obvious from Eq. (3.17) that
ΦEp(ω q) is likely to have a complex continuation in the sheet Imω > 0. This property is
not always obvious from approximate solutions for this transport quantity.

A reader might already have noticed that all transport arguments so far (see Eqs.
(3.11) and (2.16) in particular), treat the quantity |ψ(r, t)|2 as if it were the energy
density. In the case of electrons this is certainly the appropriate transport quantity to
look at, but all text books tell us that “ ε(r)(∂tψ)

2 + (∇ψ)2 ” is the true energy density
for scalar classical scattering. We demonstrate in section 3.4.1 that this notion influences
dynamic (ω �= 0) aspects of light propagation and not steady-state properties.

We can work out Eq. (3.16) by using the Bethe-Salpeter equation (2.11). The result
is

ΦEp(ω q) =
〈
G(E+,p+)

〉 〈
G(E−,p−)

〉 1 +
∑
p′
Upp′(ω q|E)ΦEp(ω q)


 . (3.18)

We have used the translational symmetry of the amplitude Green’s functions. By mo-
mentum conservation, the irreducible vertex (see Fig. 3.1) has the representation[

〈p+| ⊗ 〈p−|
]
U(E+, E−)

[
|p′+〉 ⊗ |p′′−〉

]
= (2π)3 δ(p+ − p− − p′+ + p′′−)Upp′(ω q|E) . (3.19)

Using the solution of the Dyson Equation (2.5) one can verify that

〈
G(E+,p+)

〉 〈
G(E−,p−)

〉
=

∆G(E p|ω q)

−2Eω + 2q · p+ Σ(E+,p+)− Σ(E−,p−)
, (3.20)

where ∆G = 〈G(E+,p+)〉 − 〈G(E−,p−)〉. Insertion Eq. (3.20) into Eq. (3.18) gives the
equation, [

iEω − iq · p+
1

2i
Σ(E+,p+)−

1

2i
Σ(E−,p−)

]
ΦEp(ω q)

= −
i

2
∆G(E p|ω q)


1 +

∑
p′
Upp′(ω q|E)ΦEp′(ω q)


 . (3.21)

This Generalized Boltzmann Equation takes all time and spatial correlations into account.
By using the explicit form of the Green’s function in Eq. (2.5) we have already adopted
a linear dispersion law, E2 ∼ p2, specific for free classical waves, rather than E ∼ p2.
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Figure 3.1: The irreducible vertex Upp′(ω q|E).

Without proof we will state here a very fundamental conservation law,

−ImΣ(E+,p) =
1

2E

∑
p′
S(E,p′)Upp′(E) . (3.22)

This identity is called a Ward Identity. It is valid for Schrödinger potential scattering
and the proof can be found in the book of Mahan [69] (page 617) and in the paper of
Vollhardt and Wölfe [60]. In section 3.4.2 we prove that this Ward-identity must also
hold for scalar classical waves. Although the proof is rather technical, the message of
Eq. (3.22) is simply energy-conservation. As such, the Ward Identity can be looked upon
as a “generalized Optical Theorem”. We introduced the spectral function,

S(E,p) ≡ lim
ω q→0

iE∆G(E p|ω q) =
−2E ImΣ(E+,p)

|E2 − p2 − Σ(E+,p)|2
. (3.23)

This distribution is known to count the number of states with energy E and momentum
p per unit volume [108]. Since −E ImΣ(E+,p) ≥ 0 both for negative and positive
frequencies E, we observe that S(E,p) is indeed positive-definite. In Appendix B a
useful sum rule is derived for this quantity. For future reference we introduce

2πN(E) ≡
∑
p

S(E,p) , (3.24)

representing the density of states per unit volume at frequency E [108].

The rest of this chapter is organized as follows. Section 3.3 deals with stationary
properties of the transport equation (ω = 0, q �= 0). We will make an attempt to
obtain the scattering and transport mean free path beyond the conventional Boltzmann
approximation. In section 3.4 we discuss dynamic properties (ω �= 0, q �= 0), on a
Boltzmann level only. This involves a calculation of the speed of light relevant for diffusive
transport.
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3.3 Stationary Properties: Mean Free Path

Stationary properties are characterized by the solution of the Boltzmann Equation (3.21)
for ω = 0, q �= 0 . We anticipate that this limit can be taken provided that we are not in
the localized regime. In the extended regime the limit signifies a stationary flow of energy
on scales 1/q through the averaged medium. In the localized regime the total energy is
“localized” on a sufficiently large scale 1/q > ξ (the localization length) and the limit
ω → 0 (= time-integral), 0 < q < 1/ξ must diverge [109]. In what follows we assume that
we are in the extended (diffusive) regime.

We will apply the weak localization theory, as developed by Götze [59] and Vollhardt
and Wölfe [60], to a model of point scatterers in a scalar wave equation with inclusion of
“dependent scattering”. Existing theory predicts the occurrence of localization for this
model, provided that both the density and the cross-section of the individual scatterers are
sufficiently large. We will show, however, that the resonances of the individual scatterers
play a major role in the magnitude of dependent scattering. Intuitively, one might say
that, because the optical size of a resonating scatterer is larger than its physical size, the
overlap of the optical volumes occurs at lower density than the one at which the scatterers
start to touch physically. This will lead to a drastic reduction of the collective amount of
scattering, which determines after all the onset of localization.

The theory that we present includes off-shell contributions in the scattering ampli-
tude. In the presence of disorder the wave travels a finite distance, roughly equal to the
scattering mean free path, before it scatters again. Most theories of multiple scattering
take this finite mean free path into account, but do not appreciate the side effect that, in
successive scattering, the wave does not yet satisfy the dispersion law. According to the
uncertainty principle (∆p · ∆x ∼ 1) the uncertainty in momentum is inversely propor-
tional to the scattering mean free path. In the low-density (Boltzmann) limit the neglect
of this finite width is consistent with energy conservation, and does not give problems.
Beyond the Boltzmann limit, however, the neglect of this uncertainty makes it necessary
to introduce an (ad hoc) momentum cut-off in the weak-localization correction of the
diffusion coefficient [92] [106] [107].

For ω = 0 the generalized Boltzmann equation takes the form

[
iq · p− ImΣ(E+, p)

]
ΦEp(q) =

S(E,p)

2E


1 +

∑
p′

Upp′(E)ΦEp′(q)


 , (3.25)

where we have invoked the spectral function Eq. (3.23). The solution of the generalized
Boltzmann equation is expanded as

E2ΦEp(q) =
S(E, p)

2πN(E)

[
PE(q) −

E

p

3 p̂ · JE(q)

vp vE
+ · · ·

]
, (3.26)

where the moments,

PE(q) ≡ E2
∑
p

ΦEp(q) ,
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JE(q) ≡ −vEE
2
∑
p

p̂ΦEp(q) , (3.27)

represent “density” and “current” at frequency E. The latter has been given in terms of
a, yet unspecified, speed of light vE which is by definition the ratio of JE and PE . The
minus sign in the current originates from our conventions with respect to the Fourier and
Laplace Transforms (appendix C). We have defined the phase velocity,

vp(E) =

〈
E

p

〉
=

∑
p S(E, p)E/p∑
p S(E, p)

, (3.28)

We observe that the spectral function decays as 1/p4 for large momentum p so that not
all moments of Eq. (3.25) exist. We proceed by multiplying Eq. (3.25) with p/p2 and
summing over p. In the limit q→ 0 a constitutive relation between JE and PE is found.
The proportionality factor is associated with the diffusion coefficient at frequency E,

iqPE(q) = D(E)−1 JE(q) . (3.29)

In the absence of absorption, this definition forD can be shown to agree with a definition of
the kind (3.1). The transport mean free path in turn, is defined via the relationD = vE�/3.
This yields

1

�(E)
=

∑
pp′ S(E, p)Upp′(E)S(E, p′) (1/p2 − p̂p̂′/pp′)

2
∑
p S(E, p)E/p

, (3.30)

and the transport velocity drops out, as expected. This is consistent with the idea that
vE is of no importance in steady-state situations, and � (a length scale) is the relevant
observable, determining for instance the incoherent transmission T ∼ �/L and the width
of enhanced backscattering ∆θ ∼ λ/�.

The expression for the transport mean free path, Eq. (3.30), is valid in all orders of
the density. A calculation requires full knowledge of both the self-energy Σ(E, p) and
the irreducible vertex Upp′(E). Such a knowledge is not at hand, and one must look for
suitable approximations.

If the p̂p̂′-term would not have been part of Eq. (3.30), one applies the Ward identity
(3.22), and arrives at the conclusion that � ≈ �s. The scattering mean free path is a prop-
erty of the self-energy only. For this amplitude property very sophisticated calculations
are available, of which one can be found in this chapter. Apparently, the second term in
the expression (3.30) makes the transport mean free path very difficult (if not impossible)
to calculate. Fortunately, it also generates very interesting phenomena such as Anderson
localization.

We remark that Eq. (3.30) ignores some partial derivatives with respect to p of both
the self-energy and the irreducible vertex which generate contributions proportional to q
as well, and in principle influence the diffusion constant. Higher order irreducible tensors
in Eq. (3.26) do not contribute to D.
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3.3.1 Boltzmann Limit: Equation of Radiative Transfer

The Boltzmann result for the mean free path,

�B =
�s

1− a〈cos θ〉
, (3.31)

with a the single-scatterer albedo, is recovered if we use “on-shell” contributions in the
spectral distribution,

SB(E, p) = πδ(|E|/vp(E)− p) , (3.32)

and approximate Σ and U by their lowest order in density as already given in Eqs. (2.6)
and (2.22), thereby neglecting all interference. Since the spectral function is a delta func-
tion, all momenta entering the generalized Boltzmann equation have magnitude |E|/vp.
Consequently, we can define the specific intensity IE(q, p̂) [30] at frequency E in direction
p̂ according to

E2ΦEp(q) ≡ πδ(|E|/vp − p) IE(q, p̂) . (3.33)

Eq. (3.25) now takes the form of an ordinary, stationary Boltzmann equation,

(
iq · p̂+

1

�e

)
IE(q, p̂) =

1

2
+ n

∫
dp̂′

dσ

dΩ
(p̂′ → p̂) IE(q, p̂

′) . (3.34)

We have inserted the extinction mean free path −ImΣ(1)(E+)/E = 1/�e and the scat-

tering part U
(1)
pp′(E) = ndσ/dΩ ≡ hE(µ, µ

′)/�s with �s the scattering mean free path and
hE(µ, µ

′) the normalized phase function of the scatterers [35]. The phase function is sup-
posed to be solely dependent on the cosine of the scattering angles µ and µ′. Transforming
the variable q back to real space yields the Equation of Radiative Transfer [31] [34] . By
adopting translational symmetry for two transverse directions (q|| = 0) it takes the form,

µ
dIE(τ, µ)

dτ
= −IE(τ, µ) + JE(τ, µ) . (3.35)

The optical depth is τ = z/�e and the “source function” has been defined as

JE(τ, µ) =
a

2

∫ 1

−1
dµ′ hE(µ

′, µ) IE(τ, µ
′) . (3.36)

We conclude that the equation of transfer can, in lowest order of the scatterer density, be
derived from the generalized Boltzmann equation. This gives the equation of radiative
transfer a microscopic base. Crucial is the fact that the spectral function is a delta-
function. At present, the formulation of an equation of radiative transfer is not evident
if the spectral function obtains a finite width. Beyond the Boltzmann approximation a
finite width must be included in order to satisfy energy conservation.



3.3. MEAN FREE PATH 75

3.3.2 Beyond Boltzmann: Localization of Light

In order to evaluate Eq. (3.25) for a large density of the scatterers we must make assump-
tions concerning the vertex Upp′(E) and the mass operator Σ(E+, p). We assert that
Σ(E+, p) is independent of the momentum variable p. This will be proven later to be an
accurate result in all densities when using point interactions. Upon solving the complex
dispersion law (2.7) one obtains

k2(E)−
1

4 �s(E)2
= E2 − ReΣ(E+) ,

k(E)

�s(E)
= −ImΣ(E+) . (3.37)

We define a dimensionless Ioffe-Regel type parameter γ(E) = k(E)�s(E). The regime γ ≤
1/2 corresponds to E2 − ReΣ(E+) < 0 and there is no longer a well-defined momentum
shell. This is the domain of evanescent-wave propagation. This value for γ is very close
to the predicted location of the mobility edge according to the Ioffe-Regel criterion γ ≈ 1,
so that any self-consistent localization theory must take the finite width of this shell into
account if it is to be consistent in the first place.

As was already pointed out in Eq. (3.5), the existence of enhanced backscattering can
be expected to lower the diffusion constant. To investigate this we add to the irreducible
vertex the summation of the most-crossed diagrams. In the diffusion approximation we
adopt, for conservative isotropic scatterers,

U
(mc)
pp′ (E) =

4π

�s(E)

3

�s�B(E) (p+ p′)2
. (3.38)

This form can be ascertained from a time-inversion operation on the (incoherent) ladder
summation (2.47), which interchanges some of the incoming and outgoing momenta [110].
The Boltzmann transport mean free path was obtained in Eq. (3.31). If we neglect all
other angle-dependent contributions to the irreducible vertex we find, after some algebraic
rearranging, using Eqs. (3.22) and (3.37),

1

�
=
G(γ)

�s
−

1

�B
3H(γ)

γ2

∫ ∫
dx

4π

dy

4π

fγ(x) fγ(y)

(x+ y)2

x̂ŷ

xy
, (3.39)

where we have dropped the energy label. Furthermore,

G(γ) ≡

(
1 +

1

4γ2

)(
1

2
+

arctan(γ − 1/4γ)

π

)
(3.40)

is, for γ > 1/2, a smooth function of order unity. This implies that any difference between
scattering and transport mean free path must be attributed to angle-dependent terms in
the irreducible vertex. This statement is evidently true in the Boltzmann limit (3.31).
Additionally,

H(γ) ≡
γ

G(γ)

(
1 +

1

4γ2

)
, fγ(x) ≡

2

π

1

(x2 − γ + 1/4γ)2 + 1
. (3.41)
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Figure 3.2: The functions F (γ), G(γ) and E(γ). F describes the “cut-off” in localization
theory, E the importance of enhanced forward scattering and G the ratio of scattering and
transport mean free path without consdidering the corrections from angular anisotropy .
The vertical line at γ = 1/2 signifies the domain of evanescent-wave propagation.

According to the localization theory of Vollhardt and Wölfe [60], the Boltzmann transport
mean free path must be replaced self-consistently by the exact mean free path. This makes
sense since the Boltzmann transport mean free path in Eq. (3.38) refers to a diffusive
transport which is subject to the same interference. Solving for � we obtain

� =
�s

G(γ)

[
1−

3

γ2
F (γ)

]
. (3.42)

The second term between brackets represents the change in mean free path caused by the
most-crossed diagrams. The integral over angles in Eq. (3.39) can actually be performed
analytically. The function F (γ) is given by

F (γ) = H(γ)
∫ ∞

0

∫ ∞
0

dx dy fγ(x) fγ(y)

[
x2 + y2

4xy
log

∣∣∣∣∣x+ y

x− y

∣∣∣∣∣− 1

2

]
. (3.43)

We can compare this result to an alternative (less rigorous) approach which constitutes
of taking for the most-crossed diagrams,

U
(mc)
pp′ (E) →

1

�2s
δ(p+ p′)

∫
q<q0

dq
3

�B q2
, (3.44)

to which we shall refer as the “cut-off procedure” [75] [90] [106] and locates the incoming
and outgoing momenta of the enhanced backscattering on a momentum shell. With this
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choice the transport mean free path becomes

� = �s

[
1−

3

γ2

q0�s
π

]
. (3.45)

Some controversy existed in literature concerning what to take for the cut-off q0. It was
argued by Condat and Kirkpatrick [90] that q0 must be inversely proportional to the
Boltzmann transport mean free path. If this were true this cut-off would also be subject
to the self-consistent renormalization of Vollhardt and Wölfe. This procedure turns out
to destroy the existence of a mobility edge! Fortunately, our theory shows that no cut-off
is needed. If one insists on sticking to a cut-off, our work shows that it must be inversely
proportional to the scattering mean free path, with F (γ) the factor of proportionality.
For low density this factor equals (log 2γ − 1) /2, and is also displayed in Fig. 3.2. The
finite spectral width thus makes the cut-off proportional to π/�s, an amplitude property,
rather than π/�B, a property of the intensity Green’s function. This proves that no self-
consistent renormalization procedure should be applied to this cut-off, notwithstanding
the fact that �s = �B for our isotropic model.

Eq. (3.42) locates the mobility edge (� = 0) at

γc = 0.972 , (3.46)

a result valid for isotropic point scatterers. This is close to the criterion (γc = 0.844)
found by Zdetsis et al. [111] on the basis of a “potential well analogy”. Formula (3.42)
has the convenient property that it provides a transport length scale once a solution for
the amplitude Green’s function is at hand. A diagrammatic calculation of the latter is
obtained in the next section.

In section 2.6 we reported an additional angle-dependent multiple scattering event,
namely enhanced forward scattering. Since the associated diagrams are irreducible, they
must be part of the vertex Upp′(E). We demonstrate that these contributions do not
have dramatic consequences for the diffusion constant. Using Eq. (2.72) we write for the
forward-crossed diagrams,

U
(fc)
pp′ (E) =

4πν2

�s
C [�s(p− p′)] . (3.47)

where we use, for simplicity, the analytical fit in Fig. 2.15 for the form factor C(f). The
variable ν was defined in Eq. (2.62) and is proportional to the number of scatterers per

optical volume. After scaling the momenta with
√
k/�s we obtain

� =
�s

G(γ)− E(γ)ν2
, (3.48)

in which

E(γ) =
H(γ)

γ

∫ ∫
dx

4π

dy

4π
fγ(x) fγ(y)C [

√
γ(x− y)]

x̂ŷ

xy
. (3.49)
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This function has been plotted in Fig. 3.2. As expected, the enhanced forward scattering
enhances the transport mean free path. In Eq. (3.48) we did not incorporate enhanced
backscattering, nor did we renormalize the transport mean free path self-consistently.
Such a procedure becomes necessary near a singularity of Eq. (3.48). In the proximity
of the mobility edge we find E(1) = 0.12. The calculations of the next section indicate
that η = 0.81 and |s| ≈ 0.86 correspond to a realistic condition under which localization
might be achieved. We find a negligible enhancement factor of 1.03 for the diffusion
constant. The very existence of enhanced forward scattering demonstrates, however, that
contributions other than “most-crossed” diagrams cannot be ruled out beforehand.

3.3.3 Calculation of the Self-Energy

In this section we deal with dependent-scattering effects in the amplitude Green’s func-
tion and show that the use of point scatterers allows for a sophisticated estimate of all
dependent scattering. Density corrections to the scattering mean free path were studied
by Bringi et al. [112], who applied the elegant Waterman formalism [12] [113] and invoked
the excluded volumes of the scattering particles. For the actual calculation they had to
rely on a “Quasi Crystalline Approximation” which, in fact, neglects repeated scattering
between scatterers.

We present a calculation scheme for the calculation of the self-energy for point scat-
terers. The solution of the Dyson equation for scalar waves was already given in Eq. (2.5).
To investigate the influence of the vector nature we also study vector Rayleigh scatterers.
The straightforward generalization of the Dyson equation to the Green’s function of the
Helmholtz equation (1.17) is

G(z,p) =
1

z2 − p2∆p −Σ(z,p)
, (3.50)

where ∆p ≡ I − p̂p̂ is the transverse projection matrix. The self-energy Σ(z,p) is now
a 3 × 3 complex matrix. The usual “independent-scattering” approximation consists of
taking the lowest order in density in the self-energy, which is proportional to the single-
scatterer t-matrix. In this low-density limit, the imaginary part of the self-energy directly
relates to the scattering mean free path,

1

�0
= −n

Im t(E+)

E
=

{
n |t|2/4π (scalar)
n |t|2/6π (vector)

≡ nσs(E) . (3.51)

The second equality applies for conservative scatterers and follows from an application of
the Optical Theorem to the Rayleigh point scatterer, Eq. (1.68), and the isotropic point
scatterer.

All dependent-scattering corrections in the self-energy in second order of the density
were shown in Fig. 2.6. For the scalar point interaction they sum up to

Σ(2)(p) = n2t3
∫
dx

G2
0(x)

1− t2G2
0(x)

+ n2t4
∫
dx

G3
0(x)

1− t2G2
0(x)

eip·x . (3.52)
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Here G0 is the bare scalar Green’s function and t the scalar equivalent of Eq. (1.68),

t(E+) =
−4πE2

1/α− iE3
. (3.53)

The parameter α determines the scattering efficiency of a single scatterer.

The first term in Eq. (3.52) represents the set of diagrams with the same scatterer
at both sides (loops) and gives a dependent-scattering correction to the one-scatterer t-
matrix, the second term the set with different scatterers at both sides and is, for point
scatterers, the first contribution that depends on the momentum variable p. The first
order, n2t4G3

0 exp(ip·x), is subject to an ultra-violet (UV) singularity that is automatically
renormalized by adding the total geometric series. We shall evaluate this p-dependent
contribution on-shell, p = |E|. A check afterwards will demonstrate that the computed
self-energy is indeed insensitive to the momentum p.

We propose the following (selfconsistent) calculation scheme: first we replace every
t-matrix by its loop-corrected value, and second we replace every Green’s function by its
averaged equivalent according to the Dyson Equation Eq. (2.5). Of course we must be
careful not to double-count diagrams. This yields the following set of coupled equations:

x x x

x x x x x+= + ...

+ ...

= +

x x x x x

x x+=

+   

(3.54)and was solved using a Newton-Raphson method. Eq. (3.54) can be considered as an
extrapolation of the exact “two-body problem” towards high densities, rather than an ex-
trapolation of the exact “one-body” problem (= independent scattering). The scattering
quantities of interest, the average index of refraction m(E) = k(E)/E and the scattering
mean free path �s(E) follow from the complex dispersion law (3.37). The result for the
scalar point scatterers is shown in Fig. 3.3 as a function of the parameter η ≡ 4πn/E3.
We have set the individual point scatterers to resonance (α = ∞).

Before we discuss the results let us first investigate the Rayleigh point scatterer. By
inserting the vector Green’s function into the diagrams of Fig. 2.6, it turns out that the
self-energy splits up into an isotropic (i) and a longitudinal (�) part:

Σ(p) = nt I + Σ
(2)
i (p) I+ Σ�(p) p̂p̂ , (3.55)
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Σ
(2)
i (p) = n2t3

∫
dx

[
2

3

P 2

1− t2P 2
+

1

3

Q2

1− t2Q2

]
+

+ n2t4
∫
dx

[(
j0(px)−

j1(px)

px

)
P 3

1− t2P 2
+
j1(px)

px

Q3

1− t2Q2

]
,

Σ�(p) = n2t4
∫
dx j2(px)

[
P 3

1− t2P 2
−

Q3

1− t2Q2

]
, (3.56)

where t is given in Eq. (1.68) with scalar α. Using this self-energy, the Green’s function
becomes

G(p) =
1

E2 − Σi(p)− p2∆p
+

Σ�(p)

E2 − Σi(p)

p̂p̂

E2 − Σi(p)− Σ�(p)
, (3.57)

where Σi(p) ≡ n t+Σ
(2)
i (p). The p-dependent contribution Σ

(2)
i (p) is supposed to be weakly

dependent on p and is finite for both small and large values of p. This assertion will be
checked afterwards. It will therefore be evaluated “on-shell”: p = |E|. Transforming to
coordinate space yields the following averaged Green’s function,

G(x) = G0(E → z,x) +
1

z2

∑
p

Σ�(p)

z2 − Σ�(p)
p̂p̂ eip·x . (3.58)

We defined z2 ≡ E2 − Σi(p = E). Two comments are in order here.

Firstly, the x−3 singularity of the vector Green’s function does not give UV problems in
the self-energy because the full series is summed. In fact the problems occur when t → 0.
In that case the integrands of Eq. (3.57) have a pole at E xr ≈ (Et/4π)1/3 approaching
the real axis. Physically this pole reflects a standing wave between two scatterers. If
we fit the t-matrix to a small Mie sphere with radius r0 and dielectric constant ε > 1
then t ≈ (4π/E) (Er0)

3 (ε − 1)/(ε + 2) so that xr < r0. This resonance is therefore not
expected in a scattering event involving two identical small Mie spheres.

Secondly, the two-scatterer renormalization not only gives a damped wave vector, like
in the scalar case, but also generates an extra term in the averaged Green’s function.
Replacing the Green’s functions in Eq. (3.56) by their averaged counterparts, according
to Eq. (3.54), demonstrates that the extra term in Eq. (3.58) represents an exponentially
damped longitudinal mode with decay length �s/3. In fact, our self-consistent procedure
is essential for this conclusion. For simplicity we have dropped this term in the Green’s
function in the numerical calculations.

We now discuss the outcome of the calculations. The results for the scattering mean
free path and the average index of refraction are shown in Fig. 3.3, again for resonating
scatterers. We infer that the scalar and vector calculations behave qualitatively the same
and the influence of the vector nature is rather small. Striking is the fact that resonating
scatterers seem to obey k�s = γ > 1 for any amount of disorder, and no localization
seems possible. This contradicts the intuitive feeling that localization is easiest to reach
using strongly scattering particles. In fact what happens is that the optical volumes of
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Figure 3.3: The Ioffe-Regel type parameter γ = k�s, and the average index of refraction
m against disorder η; γ0 is the independent scattering result, calculated from Eq. (3.51).
The individual scatterers are set to resonance.
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Figure 3.4: The Ioffe-Regel type parameter γ and the Fresnel Reflection coefficient R for
fixed density η = 0.81 in the neighborhood of a resonance (at E0). The horizontal dashed
line denotes the Ioffe-Regel criterion. Localization sets when α(E) < 0.

the scatterers start to overlap. In that case it can be deduced that the collective cross-
section is smaller than the sum of the individual cross-sections. For resonating scatterers
the optical radius is roughly equal to the wavelength λ, so that overlap occurs once
nλ3 ∼ 1/γ > 1. This proves that in the regime of localization the overlap of optical
volumes must be considerable. Our results are in disagreement with the work of Sornette
and Souillard [89]. They maximized the amount of scattering, but did not distinguish
between individual and collective scattering.

Off-resonance, a second expansion parameter determines the significance of dependent
scattering, namely s = E t/4π. On-resonance we have |s| = 1, off-resonance |s| < 1. If
|s| becomes much less than unity, dependent scattering is strongly suppressed and the
independent-scattering approximation becomes better.

On the basis of causality it will be argued in section 3.4.2 that α > 0 for the above
point models. In view of the modified version (1.70) of the Wu model, one can identify
1/α ∼ E2

0 − E2 going from positive to negative near the resonance at E0. The energy
dependence of α restores causality [23]. In Fig. 3.4 we have solved our self-consistent
equation (3.54) near E0, for an experimentally realistic density η = 0.81. We find that
the prospects for the occurrence of strong localization of light are better off-resonance. A
small localization window is present in the right flank of the resonance, where α(E) < 0.
This calculation illustrates that not only the absolute value of the parameter s mentioned
above is important off-resonance, but also its complex phase.

Using the solution of the self-consistent equation (3.54) it is possible to compute
the self-energies in Eq. (3.56) for any momentum p. The self-energies are plotted in
Fig. 3.5 for various amounts of disorder. We conclude that evaluating Σi(p) on the energy
shell does not introduce large inaccuracies. For the “longitudinal” self-energy Σ�(p) the
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approximation is bad but this contribution has been ignored anyway.

Figure 3.5: The vector self-energies for fixed energy as a function of momentum. (1)
ImΣi(E, p), (2) ReΣi(E, p), (3) ImΣ�(E, p), (4) ReΣ�(E, p).

Our self-consistent calculation incorporates dependent scattering from two point scat-
terers exactly. The change in the scattering mean free path in lowest order of the density
is found from Eq. (3.37),

�s

�0
= 1−

[
1

2

ReΣ(1)(E)

E2
+

ImΣ(2)(E)

ImΣ(1)(E)

]
+O(η2) . (3.59)

The correction is still a function of the one-scatterer t-matrix, and can be calculated
easily from Eq. (3.52) for scalar point scatterers, and from Eq. (3.56) for Rayleigh point
scatterers. The parameter determining the importance of the correction in Eq. (3.59) is
essentially nt3 and is recognized as the “number of scatterers per optical volume”. For
the special case that the point scatterers are on resonance we find that

�s

�0
=

{
1− 0.375 η (scalar)
1 + 0.472 η (vector) .

(3.60)

The different behavior of the scattering mean free path for Rayleigh vector scatterers and
isotropic scalar scatterers at low density can also be seen from Fig. 3.3.

3.3.4 Internal Reflection

We briefly discuss one application of the theory of the previous section. Having the
complex wavenumber z available from the computer program we have estimated the im-
portance of “internal reflection” [114] [115] [116]. The Fresnel reflection coefficient,

R(E) =

∣∣∣∣∣z(E)− 1

z(E) + 1

∣∣∣∣∣
2

, (3.61)



84 DIFFUSION & LOCALIZATION

determines how much energy is being reflected coherently on an ideal interface separating
bulk and vacuum. A value R > 0 indicates that any light in the sample will stay longer in
the sample because it is reflected back into the medium. This trapping favors large path
lengths and can be accounted for by a lowering of the effective transport mean free path.

The result for R(E) is shown in Fig. 3.4. The energy sensitivity of the complex
wavenumber z(E) near the resonance certainly makes the internal reflection an interesting
effect that cannot be ignored. This so-called Selective Reflection was already studied in
another context (atomic resonances) in Refs. [117] and [118], where the parameter η
exceeds 10. This regime of very close packing could not be studied with our method. On
the other hand, dipole-dipole coupling between the atoms may be an important transport
mechanism [93] there, and is absent in our models. In experiments involving dielectric
particles rather than atoms, η ≤ 3/x3 is at most of order unity.

Formula (3.61) applies for normal incidence, but all angles of incidence are represented
in a multiple-scattering situation. Large angles suffer more from internal reflection, so that
this formula seriously underestimates the role of internal reflection. An angle-averaged
reflectivity of 50% is not unrealistic for large densities of the scatterers. Eq. (3.61) predicts
R<∼ 10%. A forthcoming paper by Nieuwenhuizen and Luck will deal with the skin-layer
in diffusive media.

3.3.5 Electron Localization and Dependent Scattering

The method (3.54) can serve to model localization of spinless low-energy electrons with
scattering length α. To this end we use the Fermi t-matrix (1.64). The corresponding
interaction has a bound state at energy −1/α2 for α < 0.

Fig. 3.6 displays the Ioffe-Regel parameter as a function of energy. It is demonstrated
that localization sets in for sufficiently low energy. Dependent scattering pushes the
mobility edge towards larger energies than expected on the basis of the independent
scattering approximation, which is mainly due to a shift of the energy threshold. We
applied Eq. (3.42) to calculate the transport mean free path of the electrons. Below
γ = 1/2 (indicated by a horizontal bar) only evanescent waves are present.

The standard argument for electron-impurity scattering is that γ → 0 at low energies
so that Anderson localization sets in no matter what the exact criterion is. By letting α >

0 one infers from Eq. (3.37) that γ ≥ 1/2 in the independent-scattering approximation,
not being far below the criterion (3.46). Thus, Anderson localization of electrons at
low energies (in the presence of topological disorder) seems to be less trivial than often
suggested in literature. A rigorous mathematical proof exists for the onset of electron
localization at low energies [119], but it applies for a lattice with diagonal disorder (“the
standard Anderson Tight-binding model”). As a matter of fact it is still the only-existing
proof for localization in three dimensions.

We remark that the “enhanced-forward-scattering” contribution in Eq. (3.48) to the
mean free path does not vanish in the case of low-energy electron-impurity scattering.
At low energies ν → 4πn|α|3 is proportional to the “average number per cubic scatter-
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Figure 3.6: Scattering and transport mean free path for spinless low-energy electrons.
The horizontal bar indicates γ = 1/2. Energies for which γ < 1/2 have no propagating
solutions. We have taken α < 0.

ing length”. For the value ν ≥ 3 might this contribution become important, possibly
destroying the mobility edge.
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3.4 Dynamic Properties: Transport Velocity

We proceed with the definition and the calculation of the transport velocity of multiply
scattered light. This involves the solution of a dynamic Boltzmann equation (ω �= 0 and
q �= 0). The outcome will be worked out for scatterers for which the scattering properties
are known explicitly, so that the calculation of this speed can be carried out exactly,
either numerically or analytically. The generalized Boltzmann equation (3.21) is valid for
scalar waves, so that we should be able to obtain an exact solution for such waves, at least
in lowest order of the density. The relevant generalization for vector scatterers (among
which the Mie sphere) will also be considered.

In the second part of this section we compare some heuristic approaches to rigorous
results. At present, it is already obvious that some of these approaches, originally put
forward by Meint van Albada and Martin van der Mark, give essentially the exact solution.
To our surprise, the rigorous expression for the transport velocity turned out to coincide
numerically with estimates based upon “charging of the scatterers” and absorption. The
work of Bott et al. [27], discussed in section 1.7, already unifies both heuristic approaches
satisfactorily.

We emphasize that all the theoretical work reported in this section was initiated by
the wish to understand a persistent discrepancy between different experiments in our
group. In the search for Anderson localization of light, it seemed beneficial to tune to
resonances in the scattering cross-section, in combination with a large density of the
dielectric particles, thereby minimizing the elastic mean free path. Following this road,
small diffusion constants were reported [88], and were attributed to very short transport
mean free paths and thus to the nearness of a mobility edge. They were also found in our
experiments [87], which involved the multiple scattering of light of wavelength λ = 633nm
from T iO2 particles with an average radius r0 = 110nm, an index of refraction m = 2.73,
and a volume fraction of 36%. We measured a diffusion constant D = 11.7m2s−1. This is
very near the “Mott minimum” D = c0 λ/6π = 10m2s−1, and we could have speculated
about the nearness of localization.

An accurate comparison between time-resolved and steady-state measurements how-
ever, demonstrated that the low diffusion constants were not at all consistent with short
transport mean free paths (� = 0.57± 0.05µm, thus k� ≈ 5.6) as should be the case near
the mobility edge. There was no other way out than assigning an extremely small value
to the speed of the diffusing light, vE = 5±1 ·107 ms−1 = 0.17±0.03 c0. This was recently
verified by independent measurements on the frequency-dependent intensity-intensity cor-
relation function [120]. Up to now, no theory could account for such small speeds in elastic
multiple scattering from dielectric particles. The phase velocity, either found from volume
fraction arguments, or obtained from more sophisticated coherent potential methods, has
frequently been used for the velocity entering the diffusion constant of classical waves.
The volume-averaged index of refraction in our random medium is 〈ε〉 = 3.31, corre-
sponding to an effective-medium value for the phase velocity vp = 0.55 c0. This is still a
factor of three more than the experimental outcome. An exact low-disorder calculation
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of the phase velocity [91] (see Eq. (3.64)) yields the even higher value of 0.76 c0.

Theoretically, the concept of an “energy” velocity, different from both phase and
group velocity is not new and was already introduced by Brillouin [121] and Loudon
[23] [122]. Because both phase and group velocity, the latter in particular, were seen
to become anomalous (larger than c0) near the internal resonances of a semi-classical
oscillator, the above authors wondered whether a velocity exists that satisfies the causality
demand of being less than the vacuum speed of light. A velocity defined in terms of an
average energy current divided by an average energy density, turns out to obey causality
indeed. The authors concluded that the large amount of energy that is being stored in the
scatterers themselves (thus not subject to propagation) near internal resonances, largely
(!) compensates for the anomalous behavior of the group velocity. The result is that this
energy velocity becomes very small near the resonant eigenfrequencies of the oscillator.

Although we were strongly inspired by this approach, there were some reasons why
it was not directly applicable to dielectric scatterers. The most important reason is that
the treatment is essentially phenomenological. The lowering of the energy speed of light
was not directly written down in terms of microscopic properties of the scatterers, such
as the S-matrix.

Secondly, the work of Brillouin and Loudon dealt with scatterers having internal de-
grees of freedom: the resonances are of the Feshbach type [10]. In the scattering from
dielectrics the resonances are shape resonances in which case a standing wave (with ve-
locity zero) is generated inside the scatterer. In that case internal degrees of freedom are
absent.

The third reason why it was not at all evident that this energy velocity was relevant
for our experimental discrepancy, was that the authors constructed this velocity only to
prove that there was no violation of causality. They did not point out that this velocity is
a fundamental observable physical quantity that describes the propagation of the diffusing
light. As such it must enter into the diffusion constant of light!

Finally, from the theoretical side, a cancellation theorem valid for multiple electron-
impurity scattering was known. If applied straightforwardly to classical wave scattering,
this so-called Ward-Takahashi identity demonstrates unambiguously that the speed in the
diffusion coefficient is essentially the phase velocity [90]. Any velocity different from the
phase velocity would thus violate this very fundamental theorem.

Concerning the difference between internal and shape resonances, it soon became
clear that both cases were not so different after all. The internal resonances show up
as singularities of an optical, energy-dependent potential [10]. It was already pointed
out that the scattering of light can be viewed as potential scattering from an energy-
dependent potential. Near a resonance, either shape or Feshbach resonance, the t-matrices
are indistinguishable. Guided by the principle that “the same equations have the same
solutions” we had great confidence that the decrease of the energy speed discussed by
Loudon and Brillouin had been overlooked so far in the treatment of dielectric scattering.
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3.4.1 Microscopic Derivation of Transport Velocity

We present a microscopic derivation of the transport speed of light. The generalized
Boltzmann equation will be solved in lowest order of the density (the Boltzmann approx-
imation). In this approximation, sometimes also referred to as “first-order smoothing”
[62], the mass-operator and irreducible vertex are expressed in terms of the bare t-matrices
of the individual particles. In addition, the spectral function is completely on-shell and
was found in section 3.3.1. Contrary to section 3.3.1 we now include dynamic effects.

Next a careful expansion of the mass operator and the vertex into the variable ω is
made. These terms are collected together with the dynamic ω-term already present in
the Boltzmann equation (3.21). We have

Σ1(E± ± ω/2,p±) = n tp(±)p(±)(E
± ± ω/2)

= n tpp(E
±)± n

ω

2

∂tpp(E
±)

∂E
+O(ω2,q) ,

U1
pp′(ω q|E) = n tp(+)p′(+)(E

+ + ω/2) tp′(−)p(−)(E
− − ω/2)

= n |tpp′(E
+)|2

(
1 + iω

∂φpp′(E)

∂E

)
+O(ω2,q) . (3.62)

Here φpp′(E) denotes the phase shift according to tpp′(E
+) ≡ |tpp′ | exp(iφpp′). Further-

more E± = E ± i0 and p± = p± q/2. A similar expansion, involving partial derivatives
with respect to p, can be employed in terms of the variable q. These extra terms will
later be argued to vanish rigorously. The spectral function is written as

S1(E, p) = 2π|E|δ
(
E2/v2

p − p2
)
, (3.63)

where the phase-velocity vp is given by [91]

1

vp(E)
=

√
1− n

Re tpp(E+)

E2
. (3.64)

It is understood that p = |E|. Using the “density” and “current” defined in Eq. (3.27),
the Boltzmann equation can be integrated over all momenta p to give

i ω
[
1 + n δ1(E)

]
PE(ω q) +

iq · JE(ω q)

vE vp
= −πN(E) (ω → 0) , (3.65)

in terms of the yet unspecified velocity vE . We abbreviated

δ1(E) ≡ −
∂Re tpp(E

+)

∂(E2)
+
∫
dΩ

dσ

dΩ

∂φ(Ω, E)

∂E
, (3.66)

where dσ/dΩ = |tpp′(E+)|2/(4π)2 is the differential cross-section, and again p = |E| after
the partial derivatives with respect to E have been performed. In deriving Eq. (3.65) we
made use of the optical theorem,

−
1

E
Im tpp(E

+) =
∫
dΩ

dσ

dΩ
(E) , (3.67)
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cancelling some terms in Eq. (3.65) on the basis of energy conservation. This identity is
in fact the low-density limit of the Ward identity (3.22). If we want Eq. (3.65) to be an
equation of continuity,

∂tPE(r, t) +∇ · JE(r, t) ∼ δ(r) δ(t) , (3.68)

Fourier-transformed with respect to position (with conjugate variable q) and Laplace-
transformed with respect to time (conjugate variable ω), it follows that

1

vE(E)
= vp(E)

[
1 + n δ1(E) + · · ·

]
. (3.69)

Let us comment on the results obtained so far. Eq. (3.65) seems to suggest that not PE

but rather

P ∗E(ω q) ≡
[
1 + n δ1(E)

]
PE(ω q) (3.70)

represents the true energy density for our problem. Accordingly, to satisfy Eq. (3.68), the
current must be

J∗E(ω q) = −
E2

vp(E)

∑
p

p̂ΦEp(ω q) . (3.71)

Concerning the formulation of the diffusion constant and the transport velocity in section
3.3, this does not offer new insights because these transport properties depend only on
the ratio JE/PE = J∗E/P

∗
E = vE . However, the definitions above relate better to the ones

before averaging. For the scalar wave equation [123],

P ∗(r, t) =
1

2
ε(r)|∂tψ|

2 +
1

2
|∇ψ|2

SV EA
→ E2|ψE|

2 (1 + corrections inside scatterers) ,

J∗(r, t) = −Re (∂tψ)(∇ψ)
∗ SV EA

→ −
E2

vp(r)
p̂ |ψE|

2 . (3.72)

The abbreviation “SVEA” stands for the Slowly Varying Envelope Approximation [124],

ψ(r, t) = ψE(r, t) e
iEt ,

under the assumption that the exponent oscillates much more rapidly than the “envelope”
ψE(r, t). As a matter of fact our limit ω → 0 describes this approximation in reciprocal
space. The above demonstrates that δ1 �= 0 for classical waves, and moreover, implies
that this quantity is related to the energy density inside the dielectric particles and thus,
as was pointed out in section 1.7, to the “charging time”. Note that if δ1 would vanish,
just like for electrons, the velocity entering the diffusion constant would equal c2

0/vp and
not vp. The facts that δ1 = 0 and vE = vp are thus not compatible, contrary to what was
“believed” so far [90].
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Without the second (collision) term of Eq. (3.66) the transport velocity would be equal
to the group velocity,

vg(E) ≡
dE

dk
=
k(E)

E

(
dk2

dE2

)−1

=
1

vp(E)

(
1−

dReΣ(E+)

d(E2)
+

d

d(E2)

1

4 �2s

)−1

, (3.73)

with k(E) the renormalized wave vector defined in Eq. (3.37). The term 1/4�2s is second
order in density and is therefore often ignored. The group velocity is known to lose its
meaning near scattering resonances [121], and may even become negative. Text books
usually get around this problem by stating that the resonantly enhanced extinction (most
confusingly referred to as “absorption” by Loudon [122]) makes a discussion of transport
properties irrelevant. Inspection of our formula (3.69) demonstrates that the true energy
velocity takes into account the energy carried by the elastically scattered wave in all
directions. We will show that this collision contribution largely compensates for the
anomalous behavior of the group velocity. The group velocity in a random medium has a
physical significance only if the attenuated coherent wave is measured [125].

Often a group velocity enters into the diffusion constant [98], but then it is entirely
the result of an effective mass approximation. The effective mass is a property of the
(dispersion law of the) underlying crystal and does not contain information on impurities!
As a matter of fact, the group velocity of a crystal maps upon the bare speed of light (c0) in
our theory. Therefore we prefer the terminologies group velocity and velocity enhancement
to distinguish “bare” velocities from “dressed” ones.

By letting q = 0 in the equation of continuity we obtain the sum rule,

∫ ∞
−∞

dE

2π
P ∗E(ω,q = 0) =

1

−2iω

∫ ∞
−∞

dE N(E) . (3.74)

Translated back to times and coordinates, Eq. (3.74) expresses the fact that the integral
of P ∗E(r, t) does not depend on time. This justifies the statement that P ∗E is the true
energy density, and not PE . The integral in Eq. (3.74) gives the total number of states
per unit volume, which is positive but infinite.

3.4.2 Ward-Takahashi Identity Revised

Since |ψ(r, t)|2 is a conserved quantity for Schrödinger dynamics (describing for instance
electron-impurity scattering), the corrections in Eq. (3.72) are not expected for potential
scattering. The absence of these corrections is expressed by a rigorous identity, the Ward-
Takahashi identity,

Σ(E+ + ω/2,p+)− Σ(E− − ω/2,p−) =
∑
p′

∆G(E p|ω q) Upp′(qω|E) , (3.75)

valid for electron-impurity scattering [60] [69] [126]. This is a generalization of the Ward
identity in Eq. (3.22). In particular it cancels all dynamic corrections in the equation of
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continuity so that δ(E) = 0 in all orders of the density. One very fundamental consequence
is the absence of the so-called “mass-enhancement” factor in some crucial transport coef-
ficients such as the dc-conductivity [94]. As a result, the velocity in the quantum diffusion
constant is the Fermi-velocity h̄kF/me, being the quantum analogue of the classical wave
velocity c2

0/vp.

A close examination of the proof of the Ward-Takahashi identity [69] demonstrates
its validity for non-interacting, local and energy-independent potentials. Indeed, it is
known that mass-enhancement factors do enter the equation of continuity once many-
particle interactions become important. Examples are Fermi liquids [84] [127], as well as
moderately dense gases [128] [129], where these correlation effects successfully produce
the second virial constant.

What remains of this identity in the case of scalar wave scattering? Inspection of the
scalar wave equation,

[
ε(r) ∂2

t −∇
2
]
ψ(r, t) = 0 , (3.76)

illustrates that, in view of the Schrödinger equation, and after application of the above-
mentioned SVEA, a local but energy-dependent “potential” can be identified via V (r, E) =
[1− ε(r)]E2. Thus V (E + ω) �= V (E − ω). An equality here is essential for the Ward-
Takahashi identity (3.75) to be valid. This is true if ω = 0, i.e. as long as stationary
properties are discussed. Since the scalar wave equation is mapped upon the Schrödinger
equation only for ω = 0, we can conclude that the Ward-Takahashi identity must apply
for classical waves only when ω = 0. The validity of Eq. (3.75) for q �= 0 proves that
spatial vertex corrections cancel in the equation of continuity for scalar waves satisfying
Eq. (3.76).

The question what changes matrix-element formulations of conservation laws when
dealing with the vector nature of light is not easy to answer. Looking at the Helmholtz
equation for the electric field, it turns out that this equation has more resemblance to the
“other” scalar wave equation,

[
∂2
t −∇ ·

1

ε(r)
∇

]
ψ(r, t) = 0 . (3.77)

In view of Eq. (3.76), this equation suffers from the so-called “logarithmic derivative”
(∇ log ε) · ∇ which can be envisaged as a non-local (“velocity dependent”) potential.
In most cases, the dielectric constant is piecewise constant and this term gives rise to
different boundary conditions. Nevertheless, the convenient analogy of Eq. (3.76) to the
Schrödinger equation is lost.

The non-local extra term in Eq. (3.77) will cause a violation of the “q �= 0” Ward-
Takahashi identity (3.75) for waves obeying Eq. (3.77). This extra complication shows
up in the calculation of the transport velocity for vector waves, which have properties
of both kinds of scalar waves. Using an (“Wigner”) approximation we can avoid this
problem. In the next two sections we argue that the energy dependence of the potential
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is the crucial effect. The energy-dependence of the potential is inherently present in the
Maxwell’s equations (see Eq. (1.42)), not only in scalar wave equations.

We remark again that a Ward identity signifies the presence of a conserved quantity.
For waves satisfying Eq. (3.76) the (averaged) conserved quantity is given in Eq. (3.72).
On the average, both terms in Eq. (3.72) represent an equal amount of energy, so that
〈P ∗E〉 ∼ 〈ε× |ψE|2〉. An incorrect treatment of 〈P ∗E〉 results in an incorrect Ward identity
and vice-versa. Both ε and |ψE|2 are realization-dependent but one might argue that
〈P ∗E〉 ∼ 〈ε〉 × 〈|ψE|2〉. Such a procedure would make the phase velocity coincide exactly
with the transport velocity. The erroneous Ward-Takahashi identity that decouples the
averaging procedure was published by Barabanenkov [130]. The exact solution that we
will give in Eq. (3.82) as well as the SVEA in Eq. (3.72) proves that fluctuations in the
dielectric constant are strongly correlated with the intensity inside the scatterers. Near
resonances the intensity inside a scatterer can be orders of magnitude larger than the
space-averaged intensity 〈|ψE|2〉.

3.4.3 Transport Velocity of Scalar Waves

The present section is devoted to the calculation of the dynamic vertex correction δ1(E)
for scalar waves satisfying Eq. (3.76), determining the transport velocity vE into first
order of the density. Before going over to the actual computation, let us first consider
alternative, perhaps more convenient, representations for δ1. The definition in Eq. (3.66)
involves partial derivatives with respect to the energy, at constant momentum. As such it
does not seem to be of any numerical use since text books provide the on-shell t-matrix
only.

To resolve this problem we can make the observation that partial derivatives with
respect to momentum are usually very small, especially near resonances of scattering
where the E-dependence is expected to be large. Besides, as pointed out in the previous
section, a cancellation theorem applies for such derivatives, also for classical waves. This
leads us to replace the partial derivatives with respect to E by total derivatives,

δ1(E) ≈ δW (E) ≡ −
d

d(E2)
Re tpp(E

+) +
∫
dΩ

dσ

dΩ

dφ(Ω)

dE
, (3.78)

where p = Ep̂. The right-hand side of this equation turns out to be the three-dimensional
formulation of theWigner phase-delay time [20] [131], as will become more clear later. The
delay of all channels is hereby taken into account, the first term representing the coherent
wave, the second all scattering channels. For a point scatterer there is no p-dependence
in the t-matrix and Eq. (3.78) must be rigorous.

For scalar waves, obeying the scalar wave equation (3.76) we can follow the following
rigorous procedure. Using the concept of an “energy-dependent” potential,

V (r, E) = [1− ε(r)] E2 ≡ g(r)V0(E
2) , (3.79)
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Figure 3.7: Transport velocity vE (bold), phase velocity vp (dashed dotted) as well as the
Wigner approximation for vE (dotted), for scalar Mie spheres with index of refraction 2.73
and packing 10%.

we can apply the identity,

∂

∂(E2)

)
p,p′

=
∂

∂(E2)

)
p,p′,V0

+
dV0

d(E2)

d

dV0
, (3.80)

to evaluate expression for δ1. By the Ward-Takahashi identity for energy-independent
potential scattering, all partial derivatives with respect to E2 at constant potential and
momentum cancel (!) in the expression for δ1. We arrive at

δ1(E) =

[
−

d

dV0
Re tpp(E

+) + 2E
∫
dΩ

dσ

dΩ

dφ(Ω)

dV0

]
×

dV0

d(E2)
. (3.81)

The vertex correction δ1 is thus inherently a property of the on-shell t-matrix. This is in
agreement with the physical intuition that observable quantities should be expressed by
properties of the on-shell t-matrix of the individual scatterers, at least in lowest order of
the density in which case the scattered wave is given enough room to reach its asymptotic
limit before undergoing a subsequent collision. This is not clear from the original formula
(3.66).
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It turns out that the expression (3.81) can be put into an even more convenient form.
The details have been worked out in appendix A. We have

δ1(E) = −
dV0

d(E2)
〈ψ+
k | g |ψ

+
k 〉 =

∫
dr |ψ+

k (r)|
2 [ε(r)− 1] , (3.82)

where |ψ+
k 〉 is the “normalized outgoing plane wave” at momentum k, k = |E|. Alterna-

tively,

δ1(E) = E
dV0

d(E2)

d σabs(E)

d(ImV0)
. (3.83)

Here σabs is the absorption cross-section, which vanishes for ImV0 = 0. We have allowed
for a small imaginary part of the potential according to V0 → V0 + i ImV0.

¿From Eq. (3.82) it is clear that δ1 is determined by properties inside the dielectric.
Particularly, it represents the (negative) potential energy inside the scatterer in a steady-
state situation. This is in qualitative agreement with results obtained near Eq. (3.72). It
is inferred that δ1 > 0 if the “potential” is attractive corresponding to ε(r) > 1. In that
case incoming waves are captured by the scattering obstacle, leading to the formation
of a standing wave. The time needed to “charge” the scatterer to the binding energy
in Eq. (3.82) can be held responsible for the slowing down of the macroscopic energy
transport.

The representation for δ1 in Eq. (3.83) is very convenient for numerical purposes. The
equivalence of absorption arguments to the energy density in the scatterer was already
found in section 1.7. It was pointed out that an equation of the kind of (3.83) might serve
as a definition for the path length in the scatterer. This path length thus emerges in the
transport velocity and can become orders of magnitude larger than the physical size of
the scatterer.

We will now work out the rigorous expression for scalar waves for a special case: the
scalar Mie sphere. One must solve the eigenvalue problem of the scalar wave equation
with the ε(r) of a usual Mie sphere. Writing g(r) = θ(r0 − r) and V0(E) = (1 −m2)E2

we obtain, using L’Hôspital’s formula,

δ1(E) = Vm ×
3

8

m2 − 1

mx
lim
mi→0

Qabs

mi

. (3.84)

The volume Vm = 4πr3
0/3 of the sphere can be collected together with the density n in

favor of the packing fraction f = nVm. Furthermore x = Er0 is the size parameter and
Qabs the quality factor for absorption. In Eq. (3.84) we have assumed that the dielectric
constant of the sphere is positive so that ε = (m + imi)

2. If negative, which is true
for perfect metallic spheres, we must write ε = (im +mr)

2 where now mr goes to zero.
Eq. (3.84) can easily be evaluated numerically. The t-matrix is, using our conventions,

tpp′(E
+) = −

4πi

E

∞∑
n=0

(2n+ 1)Pn(cos θ) b
∗
n(x) , (3.85)
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Figure 3.8: As in Fig. 3.7 but now m = 1/2.73 and f = 36%.

corresponding to an absorption Q-factor,

Qabs(x) =
4

x2

∞∑
n=0

(2n+ 1)
(
Re bn − |bn|

2
)
. (3.86)

In these equations, the variable bn (with complex phase −βn) is the (standard) Van de
Hulst coefficient for the TE mode of the vector Mie sphere. Because the formula (3.84) is
an exact solution, it makes sense to compare it to the approximation made in Eq. (3.78).
Using the orthogonality of the different partial waves this expression can be worked out
to

δW (E) = Vm ×

(
3

2x2

∞∑
n=0

(2n+ 1)
dβn

dx
−

1

2
C(x)

)
. (3.87)

Here

C(x) =
3

x3

∞∑
n=0

(2n+ 1) Im bn . (3.88)

In terms of this variable the phase velocity is given by

vp(E) =
1√

1 + f C(x)
. (3.89)
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Figure 3.9: The transport velocity vE (bold) for a medium filled with scalar ideal reflectors
(m = ∞) with volume fraction f = 20%. The calculation is done with and without the
s-wave (n = 0).

For a more explicit derivation of these results we refer to the treatment of the vector Mie
sphere in the next section, for which the calculation is analogous. The results are shown
in Fig. 3.7. We infer that both approaches give essentially the same result, which justifies
the inclusion of some partial derivatives with respect to p in Eq. (3.78). In Fig. 3.8 we
took ε < 1 and the potential is repulsive. Because now strong resonance behavior is
absent, the results do differ. The exact solution is larger than c0. This is not a violation
of causality because the average-medium value for the speed of light is larger than c0 as
well. The exact solution is seen to be less than or equal to (at small frequencies) this
average-medium value.

Finally we have calculated the transport velocity for the scalar ideal reflector, cor-
responding to the t-matrix in Eq. (3.85) with m = ∞. Since there is no energy in the
sphere, we get δ1 = 0 so that

vE =
1

vp
(m = ∞) , (3.90)

in units of c0. This model is shown in Fig. 3.9. Contrary to the phase velocity and the
Wigner velocity, the transport velocity remains below the vacuum speed of light c0 so
that causality is obeyed. For large frequencies, the Wigner approximation approaches the
“causality limit” for the phase-shift [20]: 1/(1− f) = 1.25.

We performed the computation with and without inclusion of the s-wave. If the s-wave
is incorporated, there is a cut-off frequency at which the transport velocity vanishes (with
critical exponent 1/2) and the phase velocity diverges. Excluding the s-wave gives the
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model a Rayleigh limit at low frequencies so that this cut-off is absent. As such, the scalar
reflector without s-wave relates better to the scattering of light from an ideal reflector [4].

3.4.4 Transport Velocity for Simplified Models

The expression for the transport velocity, in particular the one for δ1, was derived for scalar
waves, but suggests a straightforward inclusion of polarization. In that case we must sum
the second term in Eq. (3.66) over all possible polarization states of the scattered wave,
and evaluate the first term, since it represents the coherent wave, for equal polarization
of the incoming and outgoing wave.

Let us treat a scattering situation for which phenomenological formulations of the
transport velocity exist in literature. We begin with the t-matrix

tpp′(E
+) =

−4πE2

1/α− β E2 − 2
3
iE3

gin·gout . (3.91)

This t-matrix emerged in Eq. (1.70) as a generalization of the Wu model, but is also the
result of a semi-classical treatment of light scattering of an harmonic oscillator [23] [122].
In that case 1/αβ = E2

0 > 0 represents the resonant eigenfrequency, and 1/β = re > 0
is the classical electron radius; gin and gout are the normalized polarization vectors of
incoming and outgoing wave. Since the model in Eq. (3.91) is essentially point-like, the
“Wigner” approximation discussed in the previous section is exact. It can readily be
verified that

∑
gout

∫
dΩ

4π
(gin·gout)

2 =
2

3
. (3.92)

We introduce the phase angle ρ according to

tpp′(E
+) = −(6π/E) sin ρ eiρ gin·gout , (3.93)

with tan ρ = 2
3
E3/(1/α− βE2). Upon direct differentiation

δ1(E) =
3π

E2

dρ

dE
+

3π

2E3
sin 2ρ . (3.94)

Neglecting higher orders in density in the phase velocity, yields the final result,

1

vE
= 1 + 2πn

1/α+ β E2

(1/α− β E2)2 + (2
3
E3)2

+O(n2) . (3.95)

This speed is seen to be strictly less than unity, provided that β ≥ 0 and α ≥ 0. The
positivity of β was anticipated in section 1.6. The values for the semi-classical oscillator
satisfy these requirements. The group velocity vg equals in the same approximation,

1

vg
= 1 + 2πn

(1/α− βE2)2(1/α+ βE2) + (2
3
E3)2(3βE2 − 5/α)[

(1/α− βE2)2 + (2
3
E3)2

]2 , (3.96)
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and becomes strongly anomalous near the resonance at E = E0. Inspection of Eq. (3.95)
proves that the transport velocity sharply drops in the neighborhood of a resonance. This
drop is essentially determined by the product of density, total cross-section and lifetime
of the resonance. We have plotted phase, group and transport velocity in Fig. 3.10.
Sufficiently far from the resonance, all velocities coincide. The two singularities in the
group velocity are characteristic for an S-shaped dispersion law [132].

The result obtained by Loudon [23], as well as Brillouin [121], is in complete agreement
with Eq. (3.95). This is not self-evident for their model differs from ours. The t-matrix in
Eq. (3.91) is the result of a coupling of the radiation field to and a subsequent integration
over internal degrees of freedom (excited states) which then become internal (Feshbach)
resonances. On the other hand, Eq. (3.81) was derived without inclusion of any internal
degree of freedom. Nevertheless, from the appearance of the on-shell t-matrix alone
one cannot distinguish between both kinds of resonances. This is consistent with the
fact that an application of our formula to their t-matrix yields the same result as an
explicit treatment of these internal degrees of freedom. Mathematically, the decrease
of the transport velocity in the presence of internal resonances can be attributed to a
singular energy-dependent “optical” [10] potential V0(E) so that the factor dV0/dE in
Eq. (3.81) becomes large. In the case of shape resonances in dielectric scattering, there is
an energy-dependent potential indeed, but the derivatives with respect to V0 are the ones
that generate the decrease of the transport velocity.

Letting β = 0 in the t-matrix above we recover the Wu point model derived in
Eq. (1.68). We can establish that

1

vE
=

1

vp
=

√√√√1 +
4πn/α

1/α2 + (2
3
E3)2

. (3.97)

This result is a beautiful demonstration of the conjecture that transport and phase velocity
coincide away from resonances. In view of Eq. (3.97), the variable 1 + 4π nα can be
interpreted as the average dielectric constant of the random medium. This conclusion
also emerges from a fit of the Wu model to the dielectric sphere at low frequencies [26].
Eq. (3.97) has been plotted in Fig. 3.11 for an “average dielectric constant” of 5.

Among the set of point interactions in Eq. (3.91), the choice α = ∞ , β > 0 satisfies
δ1(E) = 0. The corresponding t-matrix is sometimes used to model the interaction of
light with an antenna [18]. We find that vE = 1/vp < 1. Because the E2-behavior at

low frequencies is absent, this model has a cut-off frequency Ec ≈
√
4πn/β at which the

phase velocity diverges and the energy velocity vanishes. Below Ec no energy transport
is possible. This model bears a strong resemblance to the metallic sphere in Fig. 3.9.

3.4.5 Transport Velocity for Mie Scatterers

Due to the occurrence of the non-local “logarithmic derivative” in the Helmholtz equation,
the approximation of replacing partial derivatives with respect to energy by total deriva-
tives must still be preferred over the original (only for scalar waves rigorous) expression.
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Figure 3.10: Transport velocity vE = vWigner, group velocity vg and phase velocity vp for
the semi-classical model with 2πnr3

e = 0.7 and E0 = 1/re.

Figure 3.11: Transport velocity vE = vp = vWigner for a medium filled with Rayleigh point
scatterers. The “average dielectric constant” is 5. Dashed: part of anomalous group
velocity vg.
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We will later see that the for scalar waves rigorous expressions (3.82) and (3.83) remain
valid to high accuracy for vector waves. The impact of the logarithmic derivative is large
at low energies, which is precisely one regime where Eq. (3.78) can be demonstrated to
be exact.

We evaluate Eq. (3.81) for spherical dielectric (Mie) scatterers with radius r0 and
real-valued index of refraction m. The on-shell t-matrix, in terms of the copolarized and
cross-polarized channels, is given by [4]

tpp′(E
+) = −

4πi

E

(
S∗2(θ) cosϕ 0

0 S∗1(θ) sinϕ

)
, (3.98)

where

S1(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
[an(x)πn(cos θ) + bn(x)τn(cos θ)] ,

S2(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
[bn(x)πn(cos θ) + an(x)τn(cos θ)] . (3.99)

Here x = Er0 is the size parameter; πn and τn are vector harmonics. The phase shift φi of
a particular channel is given by the phase of the corresponding Si(θ). The orthogonality
relations [9] (page 43) are

〈πlπn + τlτn〉 = δnl
l2(l + 1)2

2l + 1
, 〈πlτn + τlπn〉 = 0 , (3.100)

and it follows that the second term in Eq. (3.78), the collision contribution, can be worked
out to

4π

E2

∑
i

∫
dΩ(θ, ϕ)

4π
|Si(θ)|

2 ∂φi(x, θ)

∂x
cos2 ϕ =

2π

E2

∞∑
n=1

(2n+ 1)

[
|an|

2dαn

dx
+ |bn|

2dβn

dx

]
.

The phases αn(x) and βn(x) of the different partial waves are defined according to

an(x) ≡
1

2

[
1− e−2iαn(x)

]
, bn(x) ≡

1

2

[
1− e−2iβn(x)

]
. (3.101)

In the forward direction θ = 0 it can be shown that S1 = S2. Direct differentiation yields

−
1

2E2

d (E Re tpp)

dE
=

π

E2

∞∑
n=1

(2n+ 1)

[
cos 2αn

dαn

dx
+ cos 2βn

dβn

dx

]
.

Insertion of both parts into the expression for vE gives the final answer,

vE =
1

vp

[
1 +

3

4

f

x2

∞∑
n=1

(2n+ 1)

(
dαn

dx
+
dβn

dx

)
−

1

2
f C(x)

]−1

. (3.102)
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Figure 3.12: Transport velocity (bold) in the Wigner approximation, the heuristic velocity
vW based upon charging (dotted) and phase velocity vp for vector Mie spheres with index
m = 2.73 and packing fraction 36%.

Figure 3.13: As above but now for “rain drops”: m = 1.33. The extinction curve has also
been plotted.
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We defined the packing fraction f = 4
3
πnr3

0 and, as in Eq. (3.88),

C(x) ≡
3

2x3

∞∑
n=1

(2n+ 1) ( Im an + Im bn ) . (3.103)

In terms of this parameter, the phase velocity is given by Eq. (3.89). Fig. 3.12 shows
the numerical evaluation of Eq. (3.102) for Mie scatterers with index of refraction m =
2.73, and packing f = 36%, relevant for some of our experiments. There is a strong
suspicion that a volume fraction of 36% is no longer consistent with the applied Boltzmann
approximation, but at the moment it is the best that we can do.

The transport velocity differs considerably from the phase velocity throughout the
spectrum. The reason is that the spectrum is dominated by electric and magnetic mul-
tipole resonances and their overtones. Only sufficiently far away from resonances do we
expect all velocities to coincide. In fact this holds for the Rayleigh limit x → 0. ¿From
the electric dipole contribution we find that

1

vE
=

1

vp
=

1

vg
=

√
1 + 3f

m2 − 1

m2 + 2
(x → 0) . (3.104)

We recover the Lorentz-Lorenz formula for the “effective index of refraction”. This is
the rigorous low-frequency limit for Mie spheres, in all orders of the density. In Fig. 3.13
we show the transport velocity for an index of refraction m = 1.33 which applies to water
at optical frequencies. Fig. 3.14 displays the contribution of two individual partial waves,
whose resonant structures approximately coincide in the spectrum.

3.4.6 Heuristic Approaches

In this section we indicate the relation between the transport speed and the formation of
standing waves inside the scatterer, responsible for the considerable delay of the scattering
near resonances. To this end let us reconsider the semi-classical model of Eq. (3.91). We
argue that, in this case, the decrease of the transport velocity can be understood in terms
of spontaneous emission. Semi-classically, the linear scattering of light from an harmonic
oscillator or two-level system, can be viewed as a single-photon excitation followed by a
subsequent spontaneous decay. The delay caused by the scattering process is expressed
by the inverse Einstein spontaneous emission coefficient A, and should be taken into
account in the transport of photons. The average time between two scattering events is
the scattering mean free time τs = 1/nσ. We obtain for the transport velocity,

vE

vp
≈

τs

τs + 1/A
. (3.105)

The uncertainty relation relates the energy width of the cross-section to the Einstein
coefficient according to (see Eq. (4.91) of Ref. [23]) A = 2

3
E2re. Eq. (3.105) can be proven

to coincide exactly with the microscopic outcome Eq. (3.95) with β = 1/re and 1/α = E2
0 .
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Figure 3.14: Contribution of electric (TM) quadrupole (a2) and magnetic (TE) octopole
(b3) to vE for Mie spheres with m = 3.0 and packing 36%. The resonances of an and bn+1

coincide in the limit m → ∞.

Figure 3.15: The energy density W and the extinction curve QE for a single Mie sphere
with index of refraction m = 2.73. The electric and magnetic resonances have been iden-
tified. See Table II for some numerical values.
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A similar heuristic procedure can be followed for the Mie scatterer [133]. The time
τW needed for the incoming plane wave with flux S = Ξ0 (c0 = 1) to “charge” the volume
Vm of the dielectric particle to energy

∫
dV Ξ ≡ W Vm Ξ0 is τW = VmΞ0(W − 1)/σS.

Here Ξ0 ,Ξ denote the electromagnetic energy density of the vacuum and scatterer in a
steady-state situation. Again using τs = 1/nσ we estimate that

vW

vp
=

1

1 + τW/τs
=

1

1 + f (W − 1)
. (3.106)

x x∞ resonance QE W − 1 3mQabs/8mix δW/Vm La/r0

1.100 1.15 M1I 7.275 20.82 23.21 24.14 1.558
1.565 1.65 M2I,E1I 6.979 37.15 40.50 43.61 2.834
2.035 2.11 M3I,E2I 4.788 63.16 68.85 73.38 7.023
2.380 2.60 E3I (M1II) 3.907 22.38 22.26 25.04 2.783
2.495 2.60 M4I 4.583 123.2 134.0 141.0 14.28
2.850 3.00 E4I (M2II) 5.612 57.25 55.89 62.75 4.864
2.940 3.00 M5I 5.438 265.3 286.7 299.7 25.75
3.300 3.43 E5I (M3II) 5.782 135.6 132.0 146.0 11.15
3.375 3.43 M6I 5.005 565.9 607.7 631.2 59.30
3.740 3.85 E6I (M4II) 5.118 455.7 444.2 480.2 42.39
3.800 3.85 M7I 2.430 59.00 63.56 65.04 12.77
3.940 3.99 M2III,E1III 1.748 6.240 7.199 6.412 2.011
4.170 4.28 E7I 2.534 92.69 91.93 100.2 17.72
4.195 4.29 M5II 3.018 19.81 21.12 20.80 3.418
4.225 4.28 M8I 2.412 80.53 86.11 90.56 17.44
4.495 4.51 E2III,M3III 3.314 8.617 9.482 8.910 1.397
4.590 4.70 E8I 3.909 2473 2424 2554 302.9
4.640 4.75 M6II 2.937 24.33 26.22 27.14 4.360
4.665 4.70 M9I 3.750 31.84 33.55 33.65 4.370
5.000 5.01 E3III,M4III 4.230 14.01 14.71 14.73 1.700

Table II. Numerical evaluation of the energy density W in the sphere, the absorption
Q-factor for vanishing mi and the dynamic vertex correction δ1 in the Wigner-time ap-
proximation. We considered resonant size parameters x of a m = 2.73 Mie sphere. The
ground tone of the magnetic (electric) multipole resonance of order n is indicated by MnI

(EnI), the overtones are given by higher Roman numbers; E(n − 1) coincides approxi-
mately with Mn. The last column gives an estimate of the path length of the wave in the
dielectric barrier, on the basis of the absorption arguments in section 1.7. The parame-
ter x∞ is the size parameter at which free vibration of the sphere is expected in the limit
m → ∞. These are adapted from table 10 of Ref. [4].

This velocity is expected to give a good estimate provided the energy is well confined
within the sphere, which is the case if m � 1 , x � 1. A large value for W corresponds to
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the formation of a standing wave inside the scatterer. The exact solution for scalar waves
Eq. (3.82) makes it clear that this heuristic approach must be very near the exact solution
for vector waves. This is confirmed in Fig. 3.12 where vW is displayed as well. Fig. 3.15
shows the energy density for Mie spheres with an index of refraction m = 2.73. Note the
extremely strong resonance near the size parameter x ≈ 4.6. The energy density inside
the Mie sphere is roughly 2500 times the energy density of the vacuum. For a packing
fraction of 36% this would imply a transport velocity vE ≈ c0/800 !

The delay that occurs in resonant scattering can also be estimated by allowing small
absorption. This was already indicated in section 1.7. It turned out that the “charging
time” can be expressed by means of the absorption cross-section according to Eq. (1.88).
In analogy with Eq. (3.105), a transport velocity can be introduced,

va

vp
=

τs

τs + τc
. (3.107)

Again, the outcome is surprisingly close to the exact result for scalar waves, Eq. (3.83).
This was not at all clear at the time that we started to investigate the transport velocity.
It is very satisfactory that heuristic approaches lead to an essentially exact solution.

The link between small absorption and energy density in the sphere was established by
Bott et al. [27] for the Mie sphere, by means of Eq. (1.87). It is pointed out in appendix
A that such a relation is a manifestation of a general identity, Eq. (A.10), for potential
scattering applied to classical waves. This explains why the heuristic approaches are much
more accurate than was expected beforehand.

Table II shows some numerical results for m = 2.73 spheres, near different scattering
resonances. The parameter x∞ is the size parameter at which a “free vibration” of the
sphere is expected in the limit m → ∞ [28]. The inaccuracy of the parameters W −1, δW

and 3mQabs/8mix is at most 10%. For larger index m we found even better agreement.

3.4.7 Wigner Phase-Delay Time

We come back to the Wigner (phase-) delay time in Eq. (3.78). The rigorous expression
for scalar waves indicates that the energy velocity suffers from corrections that translate
to properties of the radiation field inside the scatterers. As a result, the decrease of
the transport velocity is attributed to an enormous dwell time of the waves inside the
scatterer. On the other hand, it is known from the literature [134] [135] that the Wigner
phase-delay time is expressed in terms of the energy (or probability) density over whole
space. For Schrödinger dynamics, this exact (Jauch) formula reads

−
d

dE
Re tpp(E

+) + 2p
∫
dΩ

dσ

dΩ

dφ(Ω)

dE
=
∫
dr
[
|ψ+

E(r)|2 − 1
]
. (3.108)

It is understood that E = p2; ψ+
E is the eigenfunction at energy E. In this expression we

have already performed a plane-wave limit. Both left and right-hand sides of Eq. (3.108)
allow for a more sophisticated operator formulation [135]. The subtraction of the “free
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plane wave” | exp(ip · x)|2 = 1 guarantees the right-hand side to exist. In one dimension,
the left-hand side equals dφ/dE, with φ the phase shift of the transmission coefficient.

Using the theory of the previous sections we prove that Eq. (3.108) holds for scalar
waves as well, provided one uses the inner product associated with scalar waves. With
now E2 = p2 we prove that

−
d

d(E2)
Re tpp(E

+) +
∫
dΩ

dσ

dΩ

dφ(Ω)

dE
=
∫
dr

[
ε(r)

2
|ψ+

E(r)|2 +
1

2E2
|∇ψ+

E(r)|2 − 1

]
.

(3.109)

Proof.

For brevity, we sketch the proof. By mapping the scalar wave equation onto Schrödinger
dynamics, one identifies an “energy” E2 and an energy-dependent potential [1− ε(r)]E2.
We have shown in Eq. (3.82) that the latter generates an extra term in the left-hand
side of Eq. (3.108) (see also Appendix A). Adding the same term to the right-hand side
of Eq. (3.108) yields the desired result. In addition, it must be realized that the terms
|∇ψ+

E |
2 and εE2|ψ+

E |
2 represent an equal amount of energy. 2

We discuss the difference between the dwell time and phase-delay time. The dwell
time is the time that a wave spends inside the scatterer. Mathematically, it is given by
the derivative of the phase-shift with respect to potential (see Appendix A). On the other
hand, by Eq. (3.109), the phase-delay time is the delay that the wave suffers both inside
and outside the scatterer. It is given by the derivative of the same phase shift with respect
to energy (or frequency), rather than potential. Classically, delay can only occur inside
the scattering region, but for waves this is no longer true.

Nevertheless, near resonances of scattering, the delay inside the scatterer is so large
that we can neglect any additional delay outside. Hence the dwell time and the phase-delay
time become essentially equal time scales. This is exactly why the “Wigner” approxima-
tion in Eq. (3.78) works so well near resonances: it replaces the dwell time of the waves
in the dielectric particle by the Wigner phase-delay time.

3.5 Thouless Criterion for Light

Knowledge of the conditions under which Anderson localization sets in is of extreme
importance, even if it were only for its experimental significance. One seeks a general,
but nevertheless very practical criterion, hopefully derivable from first principles. The
Ioffe-Regel (IR) criterion, putting the wavelength equal to the mean free path, λ ≈ �,
later revised by Mott to λ/2π ≈ �, was the first attempt to predict the location of
the mobility edge in three dimensions. The IR criterion predicts the localization of low-
energy electrons and can serve to estimate the desired density of scatterers near scattering
resonances [89] [90]. Diagrammatic theories [60] as well as non-linear σ models [136] [97]
gave this criterion a microscopic foundation, and can be used to generalize the IR criterion
to, for instance, other dimensions, or anomalous spectral behavior [92] [98], but a “first-
principle” interpretation is still lacking.
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The Thouless criterion [83], developed in close connection with the scaling theory of
localization [80], can be considered as one of the most important breakthroughs in the
description of localization. Not only does this theory provide clear and verifiable predic-
tions concerning the appearance of localization in finite media of arbitrary dimension and
the value of critical exponents, it also introduces a fundamental parameter known as “di-
mensionless conductance”, g = σLd−2. Here σ is the dc electrical conductivity, and L is a
typical size of the d-dimensional random medium. A simple analysis, with application of
the Einstein relation (3.4) relating diffusion constant, density of states and conductivity,
demonstrates the equivalence of this parameter to the Thouless parameter defined by

g(L) =
∆E(L)

δE(L)
, (3.110)

with ∆E(L) ∼ D/L2 the uncertainty in energy due to the finite traversal time of the
(diffusive) transport in the medium, and δE(L) the average level spacing. The criterion

g(L) = gc ≈ 1 , (3.111)

is known as the Thouless criterion for localization.

The Thouless parameter in Eq. (3.110) is proportional to the diffusion constant and
thus, when applied to classical waves, to the transport speed. The enormous decrease of
this speed near scattering resonances thus lowers this parameter by an order of magni-
tude. A straightforward application of the Thouless criterion would locate the mobility
edge at much smaller disorders than expected, for instance, on the basis of the Ioffe-Regel
criterion, which was seen in Eq. (3.46) not to be any different for classical waves. This
is physically unacceptable. The decrease of the transport speed of light is a renormaliza-
tion of time scales, and does not enhance the correlation of the scattering medium. It
merely takes longer to accomplish a certain correlation length, which is determined by
the transport mean free path only, and not by the diffusion constant as a whole.

To incorporate these ideas we propose a Thouless parameter in terms of length scales
only,

ĝ(L) =
∆p(L)

δp(L)
. (3.112)

Here ∆p(L) is the uncertainty in momentum and is determined by the path length distri-
bution between two points in coordinate space, a distance L apart. The modified Thouless
criterion becomes

ĝ(L) = gc ≈ 1 . (3.113)

We shall refer to this criterion as the Tauros Criterion for localization [137]. We will
show that the use of this modified criterion is in agreement with previous work and does
introduce neither the transport nor the group velocity in a localization criterion.
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Before we evaluate Eq. (3.112) for a specific situation we emphasize the equivalence of
the Tauros parameter ĝ(L) to the original Thouless parameter g(L), if electron-impurity
scattering is considered. Since dynamic vertex-corrections are absent in the diffusion
constant as well as in the density of states per energy interval dE, the velocities entering
numerator and denominator of Eq. (3.110) quantities coincide, and equal the Fermi-
velocity evaluated at the Fermi-surface, without mass-enhancement corrections. Thus
Eq. (3.110) is equivalent to Eq. (3.112) for elastic electron-impurity scattering. Since the
scaling theory is a theory about length scales, it seems to us that a Thouless parameter
formulated in terms of length scales, as indicated by Eq. (3.112), is a natural consequence
of the scaling theory of localization, notwithstanding the fact that there is a one-to-one
correspondence of time and length scales in situations for which the Thouless criterion
was developed originally. A dynamical scaling theory was recently presented [138], but
did not yet incorporate our dynamic vertex corrections.

We will now evaluate the Tauros criterion (3.113) for classical waves. For a diffusion
process with step length � the path length distribution is given by [36] [42] [54]

P (s) =
3

(4πs�)3/2
exp

(
−

3L2

4s�

)
, (3.114)

and has a maximum at sm = L2/2�. The uncertainty in momentum is thus estimated to
be ∆p(L) ≈ 1/sm = 2�/L2. The level spacing between momentum states is defined as
δp(L) = dp/dN , in which dN denotes the total number of states with momentum between
p and p+ dp. Since the scalar spectral function S(E, p) in Eq. (3.23), counts the number
of states per unit volume with momentum p and energy E, it follows that

dn

dp
≡ 2
∑
p′

∫ ∞
−∞

dE

2π
δ(p− p′)S(E, p′) =

p2 〈c2〉

π2
. (3.115)

The prefactor 2 comes from the spin degeneracy, specific for light, and is here put in by
hand. The second equality follows from a sum rule derived in appendix B and applies for
a non-absorbing dielectric random medium; 〈c2〉 denotes the average-medium value of the
square of the speed of light. Eq. (3.115) demonstrates that, apart from the topological
factor 〈c2〉, the DOS per momentum interval does not depend on disorder.

For a volume L3 we find explicitly that

ĝ(L) =
2

π2
�(L)Lp2 〈c2〉 , (3.116)

so that indeed group and transport velocity are absent. The absence of these velocities in
the prediction of the location of the mobility edge is in agreement with the self-consistent
theory of Vollhardt and Wölfe [60], which has, at least in three dimensions, a stationary
(ω = 0) formulation. Their final result can be expressed in terms of a correlation length ξ.
The transport mean free path �, the length scale in the diffusion coefficient via D = vE�/3,
is given by � = �2s/ξ , with �s the scattering mean free path. In the absence of absorption,



3.5. THOULESS CRITERION FOR LIGHT 109

Figure 3.16: The Thouless criterion (horizontal) and the “Tauros” criterion (vertical).
Shaded areas are “forbidden”. The figure on the left applies to electrons and both criteria
are the same, the right figure is for classical waves, assuming that δ1 > 0.

1/ξ = 1/ξ0+1/L, where ξ0 is the correlation length of the infinite system, ξ0 = �2c/(�s−�c).
The mobility edge is reached once the system is completely correlated, ξ = L, so that
� = �2c/L. Again this is a comparison of length scales. The Tauros criterion becomes

ĝc =
2

π2
(p�c)

2〈c2〉 ≈ 1 . (3.117)

This is in agreement with Ref. [99]. The outcome in Eq. (3.46) for isotropic point scatterers
suggests that ĝc = 0.191. In a random medium containing perfect metallic scatterers with
packing fraction f the topological factor in Eq. (3.115) lowers the DOS by a factor 1− f

so that localization is predicted to become easier. The Ioffe-Regel criterion is then shifted
upwards, according to p�c ∼ 1/

√
1− f .

For classical waves the original Thouless criterion is proportional to the transport
velocity vE . If we let p = E/vp in the Tauros criterion we conclude that

g =
ĝ

1 + nδ1(E) + · · ·
. (3.118)

Near resonances is g � ĝ. What happens if g < gc and ĝ > gc? According to the
Tauros criterion we do not expect Anderson localization. Since g compares time scales,
the Thouless criterion may somehow be relevant in a dynamic measurement, possibly
giving rise to interesting new phenomena. In Fig. 3.16 the most important results in this
section have been summarized.
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Chapter 4

Localization of Light in One
Dimension

4.1 Introduction

In this chapter we discuss localization of light in random dielectric multilayers. These
are three-dimensional dielectric media in which the disorder has been imposed in one
direction only. Two dimensions obey translational symmetry, along which the transport
of energy is purely ballistic.

In general, the statement is that there will be no (diffusive) transport along the direc-
tion of disorder, so that a random walk picture is completely destroyed by interference.
If the dielectric multilayer has a finite extent in the direction of disorder, this transport is
expected to be exponentially small. These results are consistent with the scaling theory
of localization [80] which predicts all states to be exponentially localized in one dimension
for an arbitrary degree of disorder.

In one dimension, on the other hand, much more can be said. Techniques first de-
veloped by Furstenberg [81] have been used to treat localization in one dimension in a
mathematically rigorous way [139] [140] without any reference to perturbation theory. Un-
fortunately, this elegant approach can only be extended to quasi one-dimensional systems
[141], and does not work in two or more dimensions.

The physical quantity that determines exponential decay of the wave function, is the
(upper) Lyapunov exponent. Given a set of random matrices {Mi(M)} for a realization
M of the random system, the Lyapunov exponent is defined as

γ ≡ lim
N→∞

1

N
log ||M1(M) ·M2(M) · · ·MN (M) || . (4.1)

For ergodic stochastic processes [142] the Lyapunov exponent is, for “almost any” energy
[143], a positive quantity that is “almost surely” independent of M. The conclusion is
that “almost all” states are exponentially localized for “almost any” realization M.

111
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The mathematical terminology “almost any” refers to all energies except for a set of
(Lesbesque) measure zero; “almost surely” means that all allowed realizations M of the
system have the same Lyapunov exponent, again except for a set of measure zero. From a
physical point of view the terminology “almost surely” implies that the Lyapunov expo-
nent is a self-averaging quantity. Because you don’t need ensemble-averaging, localization
in one dimension is very suitable for numerical simulation.

A very useful result is the Thouless formula [144] [145], relating the Lyapunov exponent
to the density of states (DOS) by means of a dispersion relation. This formula finds its
origin in the fact that the Lyapunov exponent and the DOS correspond to the real and
imaginary part of the same analytic function. This fundamental dispersion relation is
responsible for the anomalous behavior [146] of the Lyapunov exponent on band edges
of the parent system (the system without disorder), where the DOS is small. In more
dimensions, a simple Thouless formula no longer holds but, as we have seen in section
3.5, the density of states can still be used to find criteria for localization.

To model one-dimensional localization of electrons, most workers treat the Anderson
(Tight-binding) model with “diagonal” disorder. The basic concept, however, involves
the use of random transfer matrices. These matrices show up in the description of light
propagation in random layers as well. The theory of random matrices [81], when applied
to this situation, predicts that a large stack of dielectric layers, with randomized thickness
and/or index of refraction will act as a perfect mirror. The presence of disorder-induced
localized states in a (semi-infinite) multilayer forces incoming waves to be reflected back
totally.

Recently, the study of quasi-periodic stacks, within the context of both electron [147]
[148] and light transmission [149] [150] [151], has become very popular. It has been realized
that these deterministic structures can also give rise to localized states and as such, form
an important regime between order and disorder.

We shall investigate the influence of periodicity of the parent system on the Lyapunov
exponent. If the system is periodic, the energy spectrum has a band structure, which
means that only certain energies (bands) have propagating solutions. Other energy re-
gions (gaps) are not allowed. This so-called Bloch theorem is well known in solid state
physics because it explains why metals are good conductors. Since “periodicity” and ”in-
terference” are the basic concepts, the Bloch theorem must also apply for light in periodic
dielectric structures.

By subjecting (one-dimensional) periodic systems to small disorder, we do not expect
that the Bloch picture is changed dramatically. On the other hand, the nature of the
eigenstates in the bands changes. According to statements made earlier, there is no
mobility edge in one dimension and all states in the bands are “localized”, rather than
“extended”. Concerning electron propagation, this implies that one-dimensional metals
do not exist, despite Bloch’s theorem. If a dielectric multilayer is imposed with small
disorder, the transmission of light will decrease exponentially with size. Because this
decrease is determined by the Lyapunov exponent, the latter is a very important quantity.

We anticipate that localization is most pronounced near band edges (small DOS) of the
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Figure 4.1: The one-dimensional dielectric multilayer. A denotes a vacuum layer, the Bi

denote dielectric layers with random dielectric constant.

underlying crystal, and weak near the band center (large DOS) of the underlying crystal.
In this chapter we investigate the influence of the band structure of the parent system on
the Lyapunov exponent. The system, shown in Fig. 4.1, is of the form AB1AB2AB3...

where the indices of refraction of the Bi’s will be given random distributions, with average
B0 and standard deviation σ.

Near band edges of the parent system the Lyapunov exponent of the Anderson model
[146] is known to behave non-analytically as a function of deviation: γ ∼ σ2/3. We studied
this behavior for a random dielectric multilayer. It turns out that the Anderson model
with diagonal disorder (which is for many reasons a simplified model in solid state physics)
mimics localization properties of our random multilayer (an existing physical system) very
well.

In the center of the band very interesting things happen. These effects occur in the
Anderson model too, but for light they can be more pronounced. Very large dips in
the Lyapunov exponent are discovered near special energies in the band center. These
energies will be referred to as Fabry-Perot resonances. They occur if the average index
of refraction of the B-layers is rational. The very sensitive behavior of the Lyapunov
exponent near these energies can be used to construct sharp filters.

Both near band edges and in the band center, our numerical simulations show universal
behavior of the Lyapunov exponent. Excellent agreement is found with theory developed
by Derrida and Gardner [146], Kappus and Wegner [152] and Lambert [153] when applied
to our case.
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4.2 Random Dielectric Multilayers

We consider the propagation of electromagnetic waves in a stack of homogeneous dielectric
layers, and confine ourselves to the case of normal incidence of linearly polarized light.
We define the state vector F ≡ (m(x)Ez , By ), with Ez and By the components of the
electric and magnetic fields along the z-axis and y-axis. The x-axis is located normal to
the slab, in the direction of propagation (Fig. 4.1); ε = m2 is the dielectric constant. As
was pointed out in chapter 1, Maxwell’s equations imply the dynamics

∂tF = −i

(
0 m−1(x) p

pm−1(x) 0

)
· F . (4.2)

Here is p ≡ −i∂/∂x, m(x) ≡ ε1/2(x) is the index of refraction and c0 = 1. If we insert
modes exp(−iEt) the solution of Eq. (4.2) in the jth layer is

Fj(x) = αj

(
1

−1

)
e−ikj(x−xj) + βj

(
1
1

)
eikj(x−xj) , (4.3)

with kj ≡ Emj . The continuity of Ez and By on the interface of two layers fixes the
transfer matrix according to(

αj+1

βj+1

)
= M(j → j + 1) ·

(
αj

βj

)
,

M(j → j + 1)11 = M(j → j + 1)∗22 =
mj +mj+1

2mj

e−ikj+1(xj+1−xj) ,

M(j → j + 1)12 = M(j → j + 1)∗21 =
mj+1 −mj

2mj

e−ikj+1(xj+1−xj) . (4.4)

The layers with even j are taken identical and fixed, and are for simplicity referred to
as vacuum. The index n counts the vacuum layers only. The wave function at “site” n

determines the electromagnetic field in the nth vacuum layer; mn is the reciprocal speed
of light in between the nth and (n+ 1)th vacuum layer. The transfer matrix mapping one
vacuum layer onto the next one is

M(n → n+ 1) =

(
an iqn

−iqn a∗n

)
, (4.5)

where an and qn are given by

an = e−iy
[
cos ymn − i

m2
n + 1

2mn

sin ymn

]
; qn = e−iy

1−m2
n

2mn

sin ymn .

All layers are supposed to have the same width d; y ≡ Ed is a dimensionless energy
parameter. The exponent in qn can be eliminated by a (n-independent) unitary transfor-
mation. The matrix M(n → n+ 1) has determinant 1. If all non-vacuum layers would
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have the same value for mn a superlattice structure [154] is present. The “photon” band
structure for this superlattice is determined by the criterion that both eigenvalues have
unit norm. This in turn implies |Re a| ≤ 1.

In the periodic case it is possible to write down the equation,(
αn+1

βn+1

)
+

(
αn−1

βn−1

)
= 2Re an

(
αn

βn

)
, (4.6)

which bears a strong resemblance to the Anderson model with diagonal disorder Vn (in-
terpreted as the random potential at site n),

ψn+1 + ψn−1 = (E + Vn) ψn . (4.7)

When we introduce disorder in the index of refraction,

mn ≡ m0 + δn , 〈δn〉 = 0 ,
〈
δ2
n

〉
= σ2 , (4.8)

the correspondence between the Anderson model and our problem is lost. The reason is
that variation of the index of refraction gives rise to “off-diagonal” disorder (disorder that
appears in the off-diagonal part of the transfer matrix) too.

We do not randomize the width of the layers [155]. The δn’s are supposed to be mutu-
ally independent, identically distributed stochastic variables with zero mean and deviation
σ < m0. That guarantees the stochastic process to be ergodic [142], and all statements
made in the introduction of this chapter apply. Consequently, the Lyapunov exponent can
be calculated numerically on the computer by generating only one realization M = {mn},
and then evaluating the product in Eq. (4.1). Many authors used the stationarity of the
underlying probability measure, to find the behavior of both the Lyapunov exponent and
the DOS in the Anderson model, often in the limit of weak disorder. We investigated the
validity of these predictions in our model.

In the next sections we study the Lyapunov exponent in two special energy regimes.
First we investigate the band edges of the parent system, next we deal with “Fabry-Perot”
energies, which are energies in the bans center.

4.2.1 The Band Edges

Many predictions exist about the anomalous behavior of the Lyapunov exponent on a band
edge [156] [157] [158]. A very elegant renormalization treatment was given by Bouchaud
and Daoud [159] resulting in γ ∼ σ2/3 at the band edges. A straightforward application
of their method to our random matrix (4.5) yields, in the limit σ,∆ → 0,

γ(∆, σ) = σ2/3Fb

(
∆

σ4/3

)
, (4.9)

with Fb a general positive-definite scaling function. Here ∆ ≡ y− yedge. On the band side
of the edge we expect on physical grounds the anomalous behavior to disappear and to go
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over into γ ∼ σ2. Hence Fb(η) ∼ 1/η. On the gap side the Lyapunov exponent approaches
the logarithm of the largest eigenvalue of the transfer matrix, which implies Fb(η) ∼

√
η.

However, this does not fix Fb(η) completely. Using the degenerate perturbation theory of
Kappus and Wegner [152], Derrida and Gardner [146] calculated the function Fb(η) for
the Anderson model,

Fb(η) =
1

2

∫∞
0 dt t1/2 e−t

3/6+2ηt∫∞
0 dt t−1/2 e−t3/6+2ηt

. (4.10)

We compare our model with the Anderson model, with energy E and diagonal disorder
Vn. Identifying as in Eq. (4.6),

E + Vn = 2Re a(y,mn) = 2Re a(y,m0) + 2
∂Re a

∂m
(y,m0) δn , (4.11)

we will prove that, within the scaling assumption of Derrida and Gardner, Eq. (4.10) is
valid for our model as well.

Proof.

We show that the random matrices

M1 =

(
an iqn

−iqn a∗n

)
and M2 =

(
2Re an −1

1 0

)

have the same Lyapunov exponent near the band edge, in the scaling limit of Derrida and
Gardner [146]. M2 is in “Anderson” form if the identification Eq. (4.11) is made. The
change of base Un, mapping M1 onto M2,

Un·M2·U
−1
n = M1 ,

is given by

Un =

(
sn snzn

−1/2snzn 1/2sn

)
,

where sn =
√
2iqn/(anzn + 1), zn = i Im an +

√
1− (Im an)

2. If we denote the wave

function corresponding to the transfer matrixM2 by the vector (α̃n, β̃n ) and Rn ≡ α̃n/β̃n,
we find, after some algebra, that

αn+1

αn

= an +
(
an + z−1

n

) Rn − zn

Rn + zn
. (4.12)

Notice that 〈log |αn+1/αn|〉, respectively, 〈log |Rn|〉 equals the Lyapunov exponent of M1,
respectively, M2. Next, a scaling expansion must be employed for an, zn and Rn. Follow-
ing Ref. [146] we take y− yedge ∼ λ4/3, mn −m0 ∼ λ, and Rn = ±1+λ2/3r, with λ small.
To lowest order in λ it is easily inferred that only the scaling of Rn matters in Eq. (4.12).
Consequently, log |αn+1/αn| = λ2/3K r. From Eq. (4.12) it follows that K = 1 whenever
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Figure 4.2: Numerical simulation of the Lyapunov exponent near a band edge, using
N = 5 · 105 layers, and a Gaussian distribution with deviation σ. The dotted line is the
theory for the Anderson model translated to our model.
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|qedge| < 1, so that |zn| = 1. The Lyapunov exponent of both matrices is determined by
the average of the stochastic variable r, and gives, as shown in Ref. [146], Eq. (4.20). 2

Figs. (4.2) compare the scaling prediction for the Lyapunov exponent to numerical
simulations, performed on a VAX 3100 workstation. The distribution of the δ’s was taken
to be Gaussian, and every data point was generated independently from all the others.
Because the deviation σ of the index of refraction is assumed to be orders of magnitude
smaller than the average m0, the unphysical situation that m < 0 is extremely unlikely.

Not only do we confirm the scaling behavior predicted by Eq. (4.9), the analytic
solution for Fb is confirmed as well. The agreement between the scaling result and the
simulations is good over three decades in disorder and is even better than expected before-
hand. We conclude that the scaling theory of the Anderson model provides an accurate
description of the Lyapunov exponent near the edges of a band in our model.

4.2.2 The Band Center; Fabry-Perot Resonances

In the previous section we did not put constraints on the average index of refraction m0

of the B-layers. In this section we let m0 be rational. In that case the band structure of
the parent system itself becomes periodic in energy. Special energies E exist, to which we
shall refer as Fabry-Perot energies, for which a multiple of the wavelength 2π/mnE fits
exactly in both the vacuum layer and the average of the random layer. Such an energy
is located in the band center of the parent system and Re a(m0) = ±1. Using again the
procedure of Bouchaud and Daoud [159] it is easily established that the scaling limit of
small σ and ∆ takes the form

γ(∆, σ) = σ2Fa

(
∆

σ2

)
. (4.13)

Now, ∆ ≡ y−nπ. We have taken m0 = m/n, with m and n integers. The scaling function
Fa(η) will be calculated using the degenerate perturbation theory of Kappus and Wegner.
Since the transfer matrix has determinant 1 we have a conservation law,

|αn|
2 − |βn|

2 = constant . (4.14)

For a semi-infinite system it is easily seen that this constant is zero, so that we can take
αn/βn = i eiφn . Eq. (4.5) results in

eiφn+1 =
ei(θn+φn) + Sn

e−iθn + Sneiφn
, (4.15)

where we defined Sn ≡ qn/|an| and eiθn ≡ an/|an|. With µj ≡ 〈eijφ〉 and akl ≡ 〈Skeilθ〉 it
follows [153] that

∞∑
j=1

Wlj µj = all ,
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Wlj = δlj −
l∑

k≥l−j

(−1)j+k−l l (l + k − 1)!

(l − k)! k! (j + k − l)!
a2k+j−l,l+j , (4.16)

(the paper of Lambert [153] contains an erroneous factor l! instead of l in the numerator
of Eq. (4.16) ). We search for a scaling solution of the form (4.13). To this end we write
yj = nπ + λ2sj and mj = m/n+ λtj, with λ small. The variables aj and qj in Eq. (4.5)
can be expanded as follows;

aj = (−1)m+n
[
1− iAλ− iBλ2 − Cλ2

]
, qj = (−1)m

[
Dλ+ Eλ2

]
,

with

A = π (m2 + n2) tj/2m
B = (m2 + 3n2) sj/2n

2 + π (m2 − n2) t2jn/2m
2

C = n2π2t2j/2
D = π (m2 − n2) tj/2m
E = (m2 − n2) sj/2m

2 + π (m2 + n2) t2jn/2m
2 .

We find to order λ2,

a0k = (−1)k(m+n)
[
1−
(
1

2
k2〈A2〉+ ik〈B〉

)
λ2
]
,

a1k = (−1)m+k(n+m) (〈E〉 − ik〈AD〉)λ2 , a2k = (−1)k(n+m)〈D2〉λ2 . (4.17)

All other alk are higher order in λ and must be ignored. The matrix elements Wlk, again
to order λ2, can now be obtained from

Wl,l = 1− a0,2l + l2a2,2l , Wl,l±1 = ±l a1,2l±1 , Wl,l±2 = −
1

2
l(l ± 1)a2,2l±2 . (4.18)

These elements are all seen to be proportional to λ2 so that we write Wlk ≡ Qlkλ
2; the

other elements are zero to order λ2. Furthermore a11 ≡ v1λ
2, a22 ≡ v2λ

2, and vi = 0 for
i ≥ 3. The moments (µ1, µ2, ...) ≡ µ are seen to follow from the equation,

Q · µ = v . (4.19)

Since 1 ≥ |µj| → 0 as j → ∞ it can be solved accurately, choosing a sufficiently large
dimensionality M for the matrix Q. We find, with η = s/t2,

Fa(η) =
1

2σ2

〈
log
∣∣∣a + q e−iφ

∣∣∣2〉 =
D2

2t2
+ Re

[
E

t2
µ1 −

AD

t2
iµ1 −

D2

2t2
µ2

]
+O(λ) . (4.20)

Figs. (4.3) display the result of numerical simulations for the Lyapunov exponent, for
different degrees of disorder, as well as a calculation based upon Eqs. (4.17) - (4.20). The
remarkable dip in the Lyapunov exponent is known as an anomaly, and turns out to be
slightly redshifted with respect to the Fabry-Perot energy nπ. The enormous anomaly in
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Figure 4.3: Numerical simulation of the Lyapunov exponent near two special Fabry-Perot
energies, using a Gaussian distribution. The bold line is the scaling theory of this section,
calculated by the diagonalization of an M ×M matrix.
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the band center is one of the most beautiful manifestations of Thouless criterion (section
3.5).

¿From the simulations we infer that the dip disappears for large deviations and hence
the scaling result becomes inaccurate. Because the theory still involves the diagonalization
of a matrix of infinite dimensionality, it is not clear whether the scaling result vanishes
rigorously in the center of the anomaly. This anomaly may have an important application
[160]. Near a Fabry-Perot energy we expect a very large random multilayer to act (“almost
surely”) as a narrow bandpass filter.

The scaling theory demonstrates the irrelevance of the nature of the probability dis-
tribution, provided the scaling hypothesis is satisfied (the deviation σ must exist and be
“sufficiently” small). This is certainly true for a binary distribution of the kind m/n± σ,
both with probability 1/2. Numerical results for a stack generated according to such a
distribution are presented in Fig. 4.4. The simulation is found to coincide nicely with the
scaling solution.

4.2.3 Binary Distribution.

The one-dimensional Anderson model with diagonal binary disorder was studied exten-
sively by Nieuwenhuizen and Luck [161] among others. A singular power-law behavior of
the density of states was predicted, as well as the existence of extremely narrow and pro-
nounced dips in the Lyapunov exponent. These dips were referred to as “islands” in order
to distinguish them from anomalies which are not specific for binary distributions. Very
recently, Crisanti [162] investigated a binary optical multilayer and found zero Lyapunov
exponents on special Fabry-Perot energies, for any disorder.

The theory of section 4.2.2 is valid for a general dielectric multilayer, not only one
satisfying some scaling hypothesis. We can therefore apply it to a binary distribution as
well. We consider again the sequence AB1AB2... and assume that Bi = A (m = 1) with
probability 1− p and Bi = B0 (m = m(B)) with probability p. Furthermore a and q are
the parameters defined in Eq. (4.5) corresponding to m(B). With the notation of section
4.2.2 it is easily shown that

akl = δ0k(1− p) e−2liy + p

(
q

|a|

)k (
a

|a|

)l

. (4.21)

The phase-shifts µi can be found using Eq. (4.16). The Lyapunov exponent is then
calculated from

γ =
〈
log
∣∣∣∣αn+1

αn

∣∣∣∣
〉

= Re
〈
log
(
a + q e−iφ

)〉
= p log |a| −

∞∑
j=1

(−1)j

j
Re (ajjµj) . (4.22)

Fig. 4.5 shows a comparison of the simplest version of the theory (M = 2) with a numerical
simulation on 5·105 layers. On the vertical axis we plotted γ(p)/p(1−p), knowing that the
denominator is proportional to the variance of the binary distribution. We found perfect
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Figure 4.4: As in Fig. 4.3 but now using a binary distribution of the kind mn = 0.5± σ,
both with probability 1/2.

Figure 4.5: The Lyapunov exponent for a multilayer with binary distribution. The data
points are simulations on 5 ·105 layers. The lines present the theory (M = 2). The dashed
line is the exponent for p = 1.
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agreement with theory forM = 10, but the outcome forM = 2 is surprisingly satisfactory
(and is analytically available). In addition, we plotted the Lyapunov exponent for the
periodic system B0AB0AB0... (p = 1). For energies in the spectrum of this system, we
observe that γ ∼ σ2 and anomalous behavior is absent. We did not find evidence for the
presence of islands, but this may well be due to insufficient energy resolution. Because
the binary distribution is attractive from an experimental point of view, these random
multilayers may find important applications in X-ray optics [163].

4.2.4 Poisson Distribution

We discuss briefly another kind of disorder. In this approach we let the number of vacuum
layers be the stochastic variable, rather than the index of refraction. Together with the
binary distribution such a disorder might be relevant for experimental purposes [160].
The transfer matrix for mapping the wave function in the nth non-vacuum layer onto the
(n+1)th non-vacuum layer, with a number of jn vacuum layers in between, can be found.
We calculated the transfer matrices for arbitrary angle of incidence, for both polarization
channels. They can again be represented by formula (4.5). With m the index of refraction
of the non-vacuum layers,

aS(jn) = e−imys′

[
cos(jn · ys)− i

m2s′2 + s2

2mss′
sin(jn · ys)

]
,

qS(jn) =
m2s′2 − s2

2mss′
sin(jn · ys) e−imys′ , (4.23)

for s-polarization and

aP (jn) = e−imys′

[
cos(jn · ys)− i

m2s2 + s′2

2mss′
sin(jn · ys)

]
,

qP (jn) =
s′2 −m2s2

2mss′
sin(jn · ys) e−imys′ , (4.24)

for p-polarization. We have defined s ≡ sin θ and s′ ≡ sin θ′, θ and θ′ being the angle of
the transmitted wave with respect to the surface of the vacuum and non-vacuum layers,
respectively. According to Snell’s law,

m cos θ′ = cos θ . (4.25)

We adopt a Poisson distribution for the number of layers,

P (j) = e−λ
λj−1

(j − 1)!
, (4.26)

with an average 〈j〉 = λ. It is understood that all jn are mutually independent. The
Lyapunov exponent can be calculated using Eq. (4.16). To this end we notice that the
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Figure 4.6: The Lyapunov exponent for the s-channel. We adopted a Poisson distribution
with λ = 1. All dielectric units have a width of 1.2 wavelengths; m = 0.99. The critical
angle of the homogeneous system is indicated. The horizontal line satisfies γN = 1. If
γN > 1, the stack is a good reflector. Bold: theory (M = 10).
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Figure 4.7: As in the former figure but now for the p-channel. The Brewster angle is
indicated by θB.
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coefficients akl are given by

akl =

〈(
a

|a|

)l (
q

|a|

)k〉
= e−λ

∞∑
j=1

λj−1

(j − 1)!

a(j)lq(j)k

|a(j)|k+l
. (4.27)

The formula (4.16) can now easily be solved numerically for the average phase shifts µl,
as all infinite summations converge rapidly. The Lyapunov exponent becomes

γ = Re
〈
log
(
a∗ + qeiφ

)〉
= 〈log |a|〉 −

∞∑
l=1

(−1)l

l
Re
(
a∗l,−l µl

)
. (4.28)

In Figs. (4.6) and (4.7) we have plotted some of the results, choosing an average of λ = 1
vacuum layer.

In view of a recent interest from the thin-film department at our institute in these
Poisson multilayers, we have given special attention to angles near the critical angle of
the non-vacuum layers, (s′ = 0 or cos θ = m), and near the Brewster angle (ms = s′ or
equivalently tan θ = 1/m) of the p-channel. In the last case one anticipates a vanishing
reflection, and the density of states is large. This makes the Lyapunov exponent very
small, indicating that localization is feeble. Near the critical angle the density of states
is small and localization becomes very pronounced. These random stacks may enhance
the effective critical angle considerably. One might even speculate about the existence of
Lifshitz tails [142] [164] in the density of states beyond the critical angle. The density of
states (per site or per layer) can be calculated straightforwardly from the imaginary part
of Eq. (4.28). The bottom figures show what remains of the Lyapunov exponent for a
finite stack of 100 units, generated randomly.



Appendices

A. Dwell Time in Quantum Mechanics

In this appendix we derive an expression for the dwell time in the case of ordinary potential
scattering. Starting with the Schrödinger wave equation with a yet complex potential,

i∂tψ(r, t) = −∇2ψ(r, t) + V (r)ψ(r, t) , (A.1)

we obtain the well known equation of continuity,

∂t
1

2
|ψ(r, t)|2 +∇ · J = ImV (r)|ψ(r, t)|2 , (A.2)

with J = Imψ∗∇ψ. Finally, we take the limit of vanishing imaginary part. We define the
linear functional,

Φ[g] =
∫ ∞
−∞

dt
∫
dr g(r) |ψ(r, t)|2 , (A.3)

where g(r) is real-valued and has compact support. If Im V (r) = Vi g(r) we get

Φ[g] = lim
Vi→0

1

Vi

∫ ∞
−∞

dt
∫
dS · J(r, t) . (A.4)

By Gauss’ Theorem, the surface integral can be performed on any closed surface sur-
rounding the support of g. We shall work it out in three dimensions. The asymptotic
(outgoing) solution of the Schrödinger equation is, in terms of the scattering amplitude
fk(θ) = tk kr̂(k

+),

ψ(r, t) =
∑
k

ψ0(k)

[
eik·r − fk(θ)

eikr

4πr

]
e−ik

2t ,

with θ fixing the direction of r. It follows, for r → ∞, that

∫ ∞
−∞

dt r̂ · J(r, t) = πRe
∑
kk′

δ(k − k′)ψ0(k)
∗ψ0(k

′)
[
ei(k

′−k)·r (r̂ · k̂′)

− e−ik·r
eikr

4πr
fk′(θ)− eik

′·r e
−ikr

4πr
fk(θ)

∗(r̂ · k̂′) +
fk(θ)

∗fk′(θ)

(4πr)2
+O

(
1

r3

)]
.
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Making use of the formal identity that

lim
r→∞

r e±ikr
∫ 1

−1
dcF (c) e∓ikrc =

±i

k
F (1) ,

where c = cos θ, we obtain, finally

Φ[g] = π lim
Vi↓0

1

Vi

Re
∑
kk′

ψ0(k)
∗ψ0(k

′) δ(k−k′)

[
−

i

2k

(
fk′(k̂)− f ∗k(k̂

′)
)
+
∫
dr̂

f ∗k(r̂) fk′(r̂)

(4π)2

]
.

This is further simplified by concentrating ψ0(k) in the element dkdΩ, while retaining its
normalization. Upon introduction of the functional derivative [165],

δξVH [V ] = lim
∆↓0

H [V (r) + ∆ξ(r)]−H [V (r)]

∆
, (A.5)

where ξ(r) can be complex-valued, we arrive at

dΦ[g]

dΩ
=

1

2

(
k

2π

)2

δigV

[
1

k
Im fk(k̂) +

∫
dr̂

dσ

dΩ
(k̂→ r̂)

]
. (A.6)

Here |fk(r̂)|2/(4π)2 ≡ dσ/dΩ, is the differential cross-section in the direction r̂. Eq. (A.6)
can be recognized as a derivative of the absorption cross-section with respect to the
imaginary part of the potential, similar to Eq. (1.87). Using the fact that fk depends
functionally on V (r), whereas f ∗k depends on its complex conjugate, this can also be
written as

dΦ[g]

dΩ
= −

1

2

(
k

2π

)2 [
−

1

k
δgV Re fk(k̂) + 2

∫
dr̂

dσ

dΩ
(k̂→ r̂)δgV φ(r̂)

]
. (A.7)

Here φ(r̂) is the complex phase of the T-matrix in the direction r̂. Alternatively, Eq. (A.7)
can be obtained from Eq. (A.6) by application of the Cauchy-Riemann equations. In one
dimension there is no solid angle degeneracy and the result reads

Φ[g] = −
1

2
δigV
[
1− |R(k)|2 − |T (k)|2

]
= −|R(k)|2δgV φR − |T (k)|2δgV φT . (A.8)

R(k) and T (k) represent the complex reflection and transmission coefficient ; φR and φT

are their phase-shifts.

We discuss two relevant choices for g. First, we can take g(r) equivalent to the charac-
teristic function of the potential barrier χB(r). Then

Φ[χB] =
∫ ∞
−∞

dt
∫
B
dr |ψ(r, t)|2 = τB, (A.9)

where τB is the dwell time analogous to Eq. (1.74). We conclude that the dwell time can be
formulated in terms of a functional derivative with respect to the potential in the direction
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of its characteristic function. This conclusion is in complete agreement with Ref. [166].
Another very interesting option is obtained by choosing g such that V (r) = V0g(r). In
that case the functional derivative δgV reduces to an ordinary derivative d/dV0. Going to
the plane wave limit of Φ[V ] in three dimensions, yields, in combination with Eq. (A.7),

〈ψ+
k | g |ψ+

k 〉 =
d

d (ImV0)

[
Im fk(k̂) + k

∫
dr̂

dσ

dΩ
(k̂→ r̂)

]
= −k

dσabs

d(ImV0)

=
dRe fk(k̂)

d V0
− 2k

∫
dΩ

dσ

dΩ

dφ(Ω)

d V0
. (A.10)

Only for a rectangular potential is g constant in the potential region and the integral of
|ψ+
k |

2 over this region equals the derivative of the phase-shift with respect to the potential
[167] [168].

B. Spectral Function for Scalar Waves

This appendix deals with a useful sum rule valid for the spectral function, defined in
terms of the averaged amplitude Green’s function in Eq. (3.23). The mass-operator Σ(z)
is defined according to

G(z) =
1

z2 − p2 − Σ(z)
=

〈
1

z2ε− p2

〉
. (B.1)

ε is the dielectric constant of the random medium, <> denotes ensemble-averaging in the
thermodynamic limit, and z is a complex energy. By letting z → ∞ it follows that

lim
z→∞

[
1−

Σ(z)

z2

]
= 〈ε−1〉−1 . (B.2)

This is still an operator identity but can easily be formulated for the matrix element
Σ(z, p), using the diagonality in momentum space. For a vacuum filled with dielectric
scatterers with packing fraction f and speed of light csc we then obtain for the right-hand
side of Eq. (B.2): 〈c2〉 = (1 − f) + fc2

sc. It can be inferred from Eq. (B.1) that the
matrix element G(z, p) must be analytic in both sheets Im z >< 0, since p and ε are
real-valued. The scalar wave equation has two physical sheets, separated by a branch cut
(the spectrum) located along the whole real axis. A consequence is the following sum
rule, ∫ ∞

−∞

dE

2π
S(E, p) = 〈c2〉 . (B.3)

Proof.

First we write S(E, p) = iE [G(E+, p)−G(E−, p)], with E± ≡ E ± i0. Since G(E±, p)
asymptotically decays as 〈c2〉/E2 both terms cannot be handled separately. If we subtract
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the asymptotical limit of Eq. (B.2) from both terms, with

f(z) ≡
z

z2 − p2 − Σ(z, p)
−

〈c2〉

z
,

we arrive at∫ ∞
−∞

dE

2πi

[
f(E−)− f(E+)

]
=
∫

Γ−

dz

2πi
f(z)−

∫
Γ+

dz

2πi
f(z)−

∮
z=0

dz

2πi
f(z) .

Γ± denotes a very large closed half circle in the upper and lower sheet, respectively.
Because f(z) is analytic in both sheets, the first two integrals vanish. The third Cauchy
integral is easily shown to be equal to −〈c2〉. 2

C. Conventions & Notation

I. Units:

c0 = 1/
√
ε0 = 1 in Maxwell’s equations.

h̄/2me = 1 in Schrödinger’s Equation.

II. Conventions of Laplace and Fourier transformation:

Fourier f(r) =
∑
p e
−ip·r f(p) f(p) =

∫
dr eip·r f(r)

Laplace f(t) =
∫∞
0 dt f(t) eizt f(t) =

∫
Γ

dz
2π
f(z) e−izt

III. List of used symbols (in alphabetic order):

NOTATION EXPLANATION INTRODUCTION

a albedo = scattering/extinction 1.88

D diffusion constant 3.2

E (internal) frequency or energy 1.20

f packing fraction 3.84

|F〉 six-dimensional vectorfield in K chapter 1

|f〉 three-dimensional vectorfield: |f〉 ⊗ |f〉 ∈ K chapter 1

g(L) Thouless/Tauros parameter 3.110
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NOTATION EXPLANATION INTRODUCTION

k, p (internal) momentum chapter 1

k̂ normalized vector k/|k| 1.20

K
(0)

(free) time evolution for Maxwell’s equations 1.8, 1.13

m (complex) index of refraction 1.18

N(E) density of states per unit volume 3.24

N number of scatterers or layers 1.50

n number density of scatterers 2.6

q external momentum, −iq ↔∇)macroscopic 3.15

r0 size of Mie sphere 1.71

s dimensionless isotropic T-matrix E t/4π 2.29

S(E, p) spectral function 3.23

Upp′(ω q|E) Irreducible Vertex 2.11

vp phase velocity 3.28

vg group velocity 3.73

vE transport, energy velocity 3.65

W (· · ·) (average) energy density 1.10

x size parameter for Mie sphere 1.58

z complex frequency or energy 1.15

z0 extrapolation length 2.47

γ(µ, µ′) bistatic coefficient 2.1

γ(E) Ioffe-Regel parameter (chapter 3) 3.37
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NOTATION EXPLANATION INTRODUCTION

γ(E) Lyapunov exponent (chapter 4) 4.1

δ(E) dynamic vertex correction 3.65

ε(r) dielectric constant 1.4

η disorder parameter 2.28

K Hilbert space for electromagnetic field 1.12

�s scattering mean free path 2.9

�e extinction mean free path 2.9

� (�B) (Boltzmann) transport mean free path 3.3

�a absorption mean free path 2.9

µi,s cos θin,scattered 2.1

µ(r) magnetic permeability 1.4

ν number of scatterers per optical volume η |s|3 2.62

Π
(0)

transverse projections in K (0) 1.14

∑
p

∫
dp (2π)−3 1.63

∑
jk̂E

∑
j=±1

∫
4π dk̂

∫ +∞
−∞ dE (2π)−3 1.22

Σ(z,p) self-energy or Mass-operator 2.3

σ(r) electric conductivity 1.4

σ standard deviation 4.9

τ optical depth 2.21

ω external frequency, −iω ↔ ∂t)macroscopic 3.12

Ω
±

Møller wave operators 1.25
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