Dynamic correlations, interference and time-dependent speckles

Bart van Tiggelen

Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France

Collaborators:

Michel Campillo (LGIT-Grenoble)	John Page (Winnipeg, Canada)
Ludovic Margerin (LGIT-Grenoble)	Michael Cowan (Toronto, Canada)
Geert Rikken (LCMP-Toulouse)	Azriel Genack (Queens College, NY)
Patrick Sebbah (LPMC-Nice)	
Sergey Skipetrov (LPMMC – Grenoble)	
D:	

Eric Larose (LGIT)

Support: GDR PRIMA & IMCODE (CNRS), Ministère de la Recherche (ACI jeune chercheur), NSF (USA), ESA

abstract

Coherent Backscattering with Seismic Waves Eric Larose, Ludovic Margerin, Michel Campillo, BavT

Phase Statistics

John Page, Micheal Cowan, BAvT, Azriel Genack, Patrick Sebbah

4 The Feigel process

Geert Rikken, BavT

----- magnitude

Seismic waves in the French Auvergne

Eric Larose, Ludovic Margerin, Michel Campillo et Bart van Tiggelen , PRL, July 2004

Operator noise

Mesoscopic signal

Mean free time=0.7 seconds Wavelength= 20 meter c_{Ra} Mean free path = 210 m

 $c_{Rayleigh} = 300 \text{ m/s}$

0 0

probability distribution

$$P(\Psi_1, \Psi_2, ..., \Psi_N) = \frac{1}{\pi^N \det \mathbf{C}} \exp\left(-\Psi^* \cdot \mathbf{C}^{-1} \cdot \Psi\right) \qquad C_{ij} = \langle \Psi_i \Psi_j^* \rangle$$

diffusion equation

Gaussian Speckles
$$\Psi = \sqrt{I} e^{i\phi}$$
 intensity
phase

1. Stationary: Distribution of speckle intensity $P(I, \phi) = \frac{1}{\langle I \rangle} \exp(-I/\langle I \rangle)$

2. Dynamics :Distribution of « Wigner delay » time $P\left[\Psi\left(\omega - \frac{\Omega}{2}\right), \Psi\left(\omega + \frac{\Omega}{2}\right)\right] = \frac{1}{\pi^2 \det C} \exp\left(-\Psi^* \cdot C(\Omega)^{-1} \cdot \Psi\right)$

$$\Rightarrow P\left(\frac{\mathrm{d}\phi}{\mathrm{d}\omega} = \phi'\right) = \frac{Q}{2} \quad \frac{1}{\left[Q + \left(\hat{\phi}' - 1\right)^2\right]^{3/2}}$$

Speckles of Micro-waves in Quasi 1D media

Distribution of delay time in transmission

$$P\left(\frac{\mathrm{d}\phi}{\mathrm{d}\omega} = \phi'\right) = \frac{Q}{2} \quad \frac{1}{\left[Q + \left(\hat{\phi}' - 1\right)^2\right]^{3/2}}$$

diffusion equation $Q = \frac{2}{5}$

Genack, Sebbah, Stoytchev & Van Tiggelen PRL, 1999

Diffuse Acoustic Wave Spectroscopy $\psi(t, -\frac{1}{2}\tau)$ $\psi(t, +\frac{1}{2}\tau)$ τ $\frac{\langle \psi(t, -\frac{1}{2}\tau), \psi(t, +\frac{1}{2}\tau) \rangle}{\langle \psi(t)^2 \rangle} = g(\tau) = \exp\left(-\frac{1}{6}k^2n \left\langle \Delta \mathbf{r}^2(\tau) \right\rangle\right)$

$$g(\tau) \approx \exp\left(-\frac{1}{6}\frac{\tau^2}{t_{DAWS}^2}\right)$$

unwrapped phase

$$\ell^*=1.5 mm; \tau^*=1 \mu s$$

$$P[\psi(t_{1}),\psi(t_{2}),\psi(t_{3}),\psi(t_{4})] \int dA_{1} dA_{2} dA_{3} dA_{4} d\phi_{4}$$

$$P[\phi(t_{2})-\phi(t_{1}),\phi'(t_{1}),\phi'(t_{2})]$$

$$P[\phi'(t_{2})-\phi(t_{1}),\phi'(t_{1}),\phi'(t_{2})]$$

$$P[\phi'(t),\phi''(t),\phi'''(t)]$$

$$P[\psi(t_{1}),\psi(t_{2}),\psi(t_{3}),\psi(t_{4})] \int dA_{t} d$$

Phase is not an analytic function

DAWS signal or dynamic noise ? Noise is interesting

Patrick Sebbah **Azriel Genack**

theorem

 $\oint d\mathbf{l} \cdot \nabla \phi(\mathbf{r}) = 2\pi Q$

 $Q = \sum q_i$ zero i

 $\langle Q \rangle = 0$

 $\left\langle Q^2(\text{circle})\right\rangle = \frac{1}{2\pi} \int_0^{2\pi} d\Delta\theta \left\langle \frac{d\phi}{d\theta} \left(-\frac{\Delta\theta}{2} \right) \frac{d\phi}{d\theta} \left(\frac{\Delta\theta}{2} \right) \right\rangle$

Count the mean free path?

 $\left(\frac{d\phi}{d\theta}\left(-\frac{\Delta\theta}{2}\right)\frac{d\phi}{d\theta}\left(\frac{\Delta\theta}{2}\right)\right)$ $\langle Q^2(\text{circle})\rangle = \frac{1}{2\pi} \int_0^{2\pi} d\Delta\theta \langle$

kl=1000 kl=100

kl=10

20

25

2 dimensions

The Feigel process: Momentum from nothing ?

A. Feigel, Phys. Rev. Lett. 92, 020404 (2004)

BaVT & G. Rikken, PRL Comment 2004

ħω

bi-anisotropic media:

$$\begin{cases} \mathbf{D} = \mathbf{\varepsilon} \cdot \mathbf{E} + \boldsymbol{\chi} \cdot \mathbf{B} \\ \mathbf{H} = \mathbf{B} - \boldsymbol{\chi} \cdot \mathbf{E} \end{cases}$$

E

Lorentz invariance? divergence....?

 $\langle 0 | \rho | \mathbf{v}_n | 0 \rangle = \frac{2}{3} \frac{\hbar \omega_c^4}{\pi^3 c^4} (1 + \varepsilon) \varepsilon_{nkl} \chi^{kl} \propto \hbar \omega_c^4 \mathbf{E}_0 \times \mathbf{B}_0$

B

= <u>0</u>v

The Feigel process: Momentum from nothing ?

En préparation

BAVT & G. Rikken
En préparation
$$\langle 0|\rho \mathbf{v}|0\rangle = -\frac{\pi^3}{L^4} \hbar c_0 \chi \mathbf{E}_0 \times \mathbf{B}_0 \left(1 - \frac{30 L}{\pi d} \frac{\sin \frac{\pi d}{2L}}{\cos^3 \frac{\pi d}{2L}}\right)$$